

Self-Attention Limits Working Memory Capacity of Transformer-Based Models

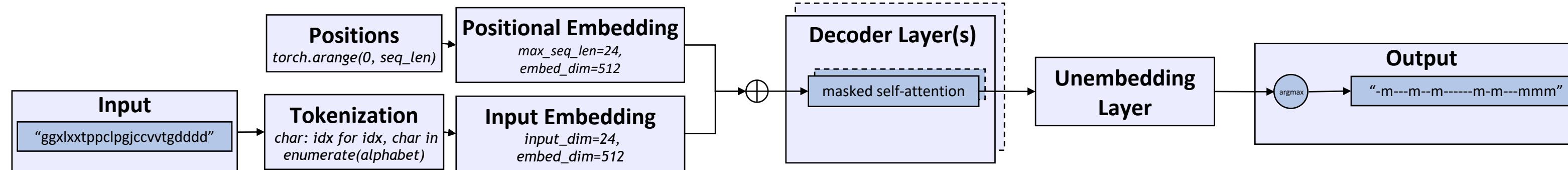
Dongyu Gong, Yale University (dongyu.gong@yale.edu); Hantao Zhang, Yale University

Background

Transformer-based large language models (LLMs) have striking limits in their working memory capacity, as measured by N-back tasks in cognitive science [1]. However, there is still a lack of mechanistic interpretability as to why this phenomenon would arise.

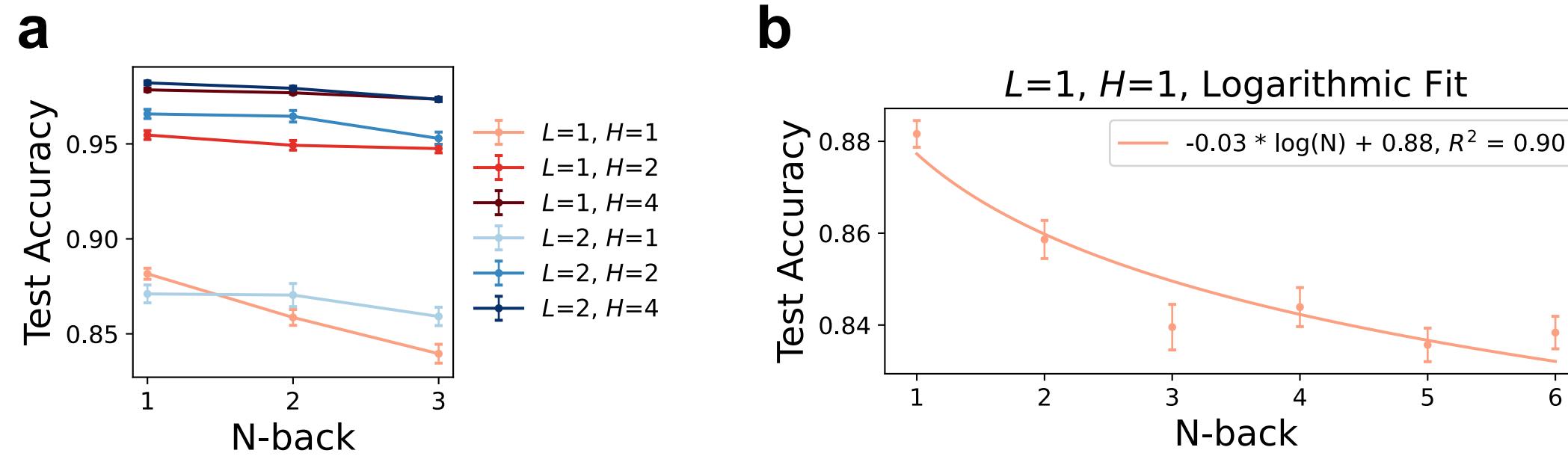


Methods

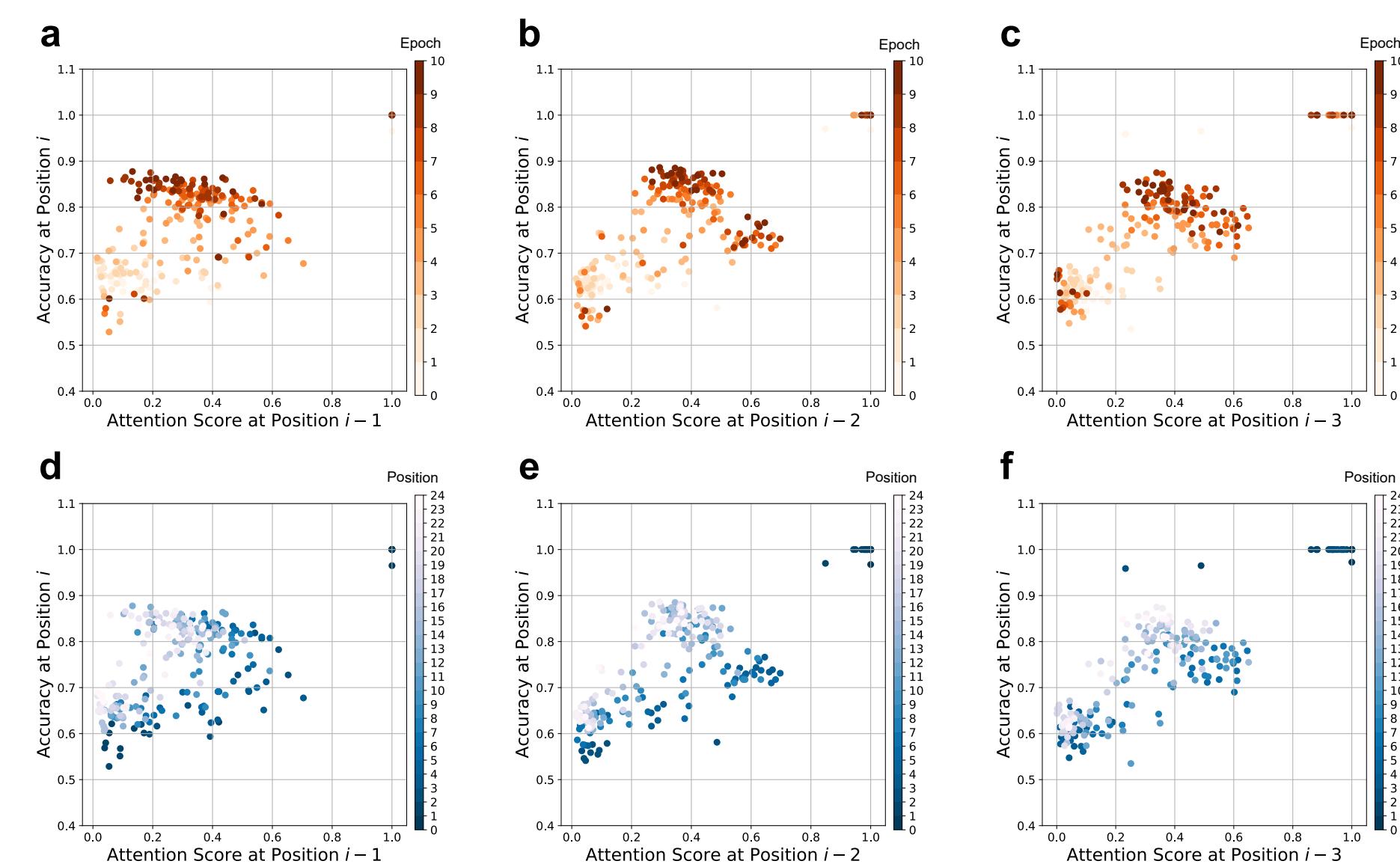


Inspired by the **executive attention theory** in cognitive science, we hypothesize that the self-attention mechanism within Transformer-based models might be responsible for their working memory capacity limits. To test this hypothesis, we train vanilla decoder-only transformers to perform N-back tasks. We mainly focus our analysis on a causal Transformer containing one decoder layer with only one attention, although we also test a few architectural variants in the number of decoder layers (L) and number of attention heads per layer (H) for comparisons.

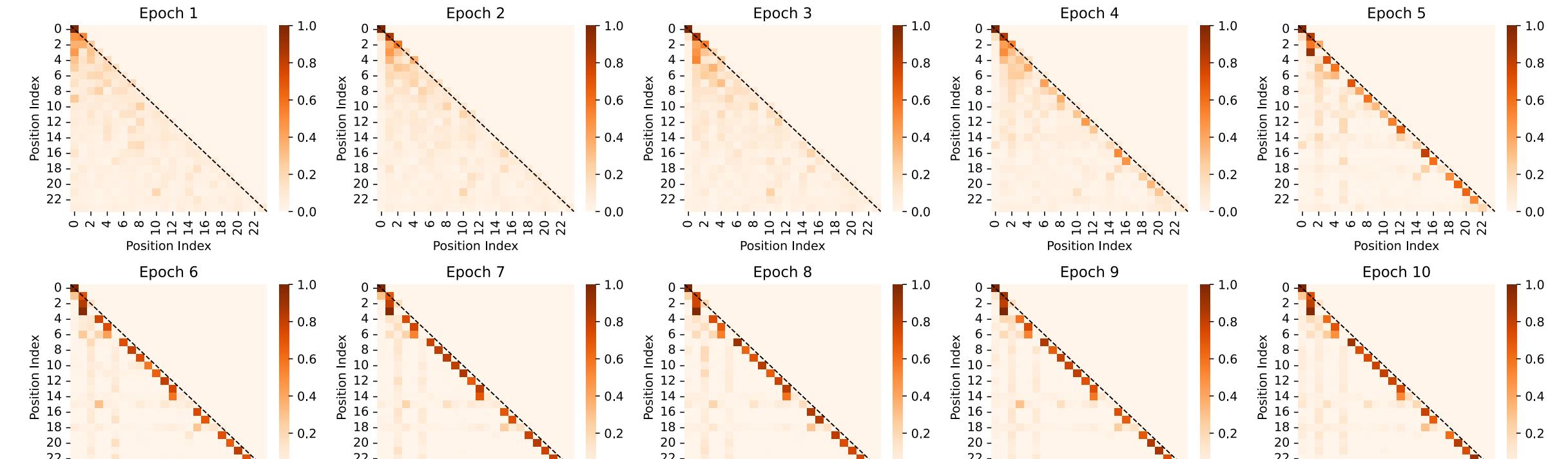
Results



2. Attention scores during training reflect the trajectory of learning. Starting with almost uniformly distributed attention scores in each row, attention scores gradually aggregate to a line corresponding to the N-back positions.



1. Model accuracy decreases as N increases. We find a significant decline in model performance as N increases for the 1-layer 1-head model. To further confirm this pattern, we extend the task to $N = 6$ and find a significant logarithmic decline in the test accuracy as N increases.



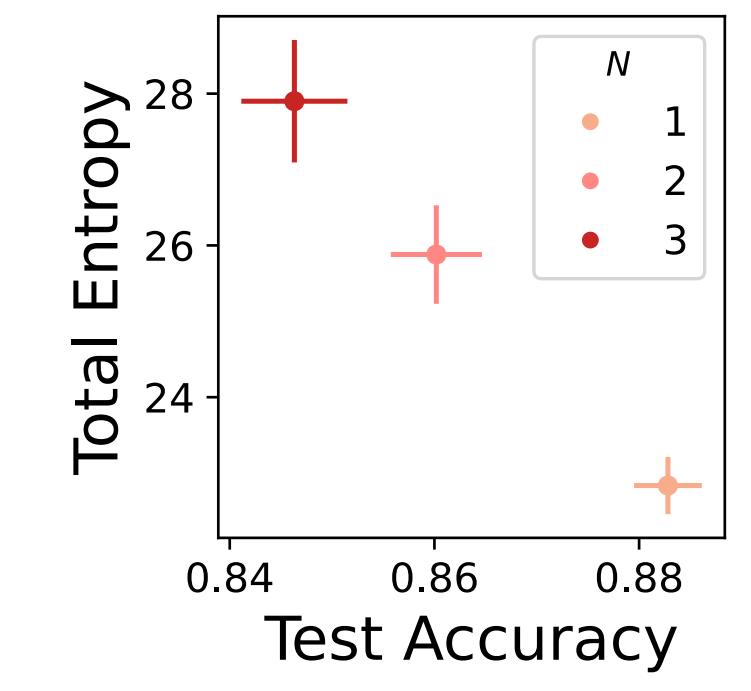
3. Attention score at position $i - N$ increases with test accuracy at position i . Over training epochs, the attention score at position $i - N$ increases along with the accuracy at position i (panel a-c). When using the same data but assigning colors to the dots according to which position each dot belongs to (panel d-f), there is a clear pattern that attention scores get dispersed at later locations.

4. Total entropy of attention scores increases as N increases. We define the total entropy H_N of each attention score matrix $A \in \mathbb{R}^{24 \times 24}$ as

$$H_N(A) = - \sum_{i=1}^{24} \sum_{j=1}^i A_{i,j} \log(A_{i,j})$$

where

$$A_{i,j} = \text{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)_{i,j}$$



We find that H_N increases as N increases, leading to the decrease in test accuracy.

Our findings suggest a shared role of attention in the working memory capacity of humans and LLMs. The mechanistic interpretability of working memory capacity limits in Transformer-based models could inform future efforts to design more powerful model architectures with enhanced cognitive capabilities [2].