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Inspired by the executive attention theory in cognitive science, we hypothesize that the self-attention mechanism
within Transformer-based models might be responsible for their working memory capacity limits. To test this
hypothesis, we train vanilla decoder-only transformers to perform N-back tasks. We mainly focus our analysis on a
causal Transformer containing one decoder layer with only one attention, although we also test a few architectural
variants in the number of decoder layers (L) and number of attention heads per layer (H) for comparisons.
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Discussion

Our findings suggest a shared role of attention in
the working memory capacity of humans and
LLMs. The mechanistic interpretability of working
memory capacity limits in Transformer-based
models could inform future efforts to design more
powerful model architectures with enhanced
cognitive capabilities [2].
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increases. We define the total entropy Hy, of each attention
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We find that Hy Iincreases as N increases, leading to the
decrease in test accuracy.



