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We find that 𝐻! increases as N increases, leading to the
decrease in test accuracy.
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Transformer-based large language models (LLMs)
has striking limits in their working memory capacity, as
measured by N-back tasks in cognitive science [1].
However, there is still a lack of mechanistic
interpretability as to why this phenomenon would
arise.
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Inspired by the executive attention theory in cognitive science, we hypothesize that the self-attention mechanism
within Transformer-based models might be responsible for their working memory capacity limits. To test this
hypothesis, we train vanilla decoder-only transformers to perform N-back tasks. We mainly focus our analysis on a
causal Transformer containing one decoder layer with only one attention, although we also test a few architectural
variants in the number of decoder layers (L) and number of attention heads per layer (H) for comparisons.

Results

1. Model accuracy decreases as N increases. We
find a significant decline in model performance as N
increases for the 1-layer 1-head model. To further
confirm this pattern, we extend the task to N = 6 and
find a significant logarithmic decline in the test
accuracy as N increases.

2. Attention scores during training reflect the
trajectory of learning. Starting with almost
uniformly distributed attention scores in each row,
attention scores gradually aggregate to a line
corresponding to the N-back positions.

3. Attention score at position i − N increases with test
accuracy at position i. Over training epochs, the attention score
at position i − N increases along with the accuracy at position i
(panel a-c). When using the same data but assigning colors to
the dots according to which position each dot belongs to (panel
d-f), there is a clear pattern that attention scores get dispersed at
later locations.

Discussion
Our findings suggest a shared role of attention in
the working memory capacity of humans and
LLMs. The mechanistic interpretability of working
memory capacity limits in Transformer-based
models could inform future efforts to design more
powerful model architectures with enhanced
cognitive capabilities [2].
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Tokenization
char: idx for idx, char in 

enumerate(alphabet)
“ggxlxxtppclpgjccvvtgdddd”

Input

Positions
torch.arange(0, seq_len)

Positional Embedding
max_seq_len=24, 
embed_dim=512

Input Embedding
input_dim=24,

embed_dim=512

Decoder Layer(s)

masked self-attention
Unembedding

Layer

Output
argmax “-m---m--m------m-m---mmm”


