
The Surprising Power of 
Small Language Models

Mojan Javaheripi
Microsoft Research

1

Joint work with
Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, 
Sivakanth Gopi, Suriya Gunasekar,, Piero Kauffmann, Yin Tat Lee, Yuanzhi Li, Anh Nguyen, Gustavo de 
Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Michael Santacroce, Anh Harkirat Singh Behl, Adam Kalai, Xin 
Wang, Rachel Ward, Philipp Witte, Cyril Zhang, Yi Zhang



Moore’s Law of Language Models

2018 2019 2020 2021

Transformer
(50M)

GPT
(110M)

BERT-L
(340M)

GPT-2
(1.5B)

MegatronLM
(8.3B)

T-NLG
(17B)

GPT-3
(170B) Megatron-Turing NLG

(530B)

≈500B

Figure inspired by Microsoft Research Blog: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

2022

5B

10B

15B

170B

2023

GPT-3.5
?

GPT-4
?

≈



The power of Large Language Models

Figure from “Sparks of Artificial General Intelligence: Early experiments with GPT-4”, 
arXiv preprint arXiv:2303.12712 (2023).



The surprising Power of Small Language Models

• Can these emergent abilities be achieved at a smaller scale?

• Our line of work with the Phi models aims to answer this question
• SLMs that achieve on par performance with models of much higher scale



The surprising Power of Small Language Models

• Can these emergent abilities be achieved at a smaller scale?

• Our line of work with the Phi models aims to answer this question
• SLMs that achieve on par performance with models of much higher scale

phi-1 (1.3B)

Python coding model with 
perf. comparable to models 10x 
larger trained on 100x more data

• Specialist SLMs are possible
• What about a general model?



The surprising Power of Small Language Models

• Can these emergent abilities be achieved at a smaller scale?

• Our line of work with the Phi models aims to answer this question
• SLMs that achieve on par performance with models of much higher scale

Natural language model 
with NL comparable to models 10x larger 
trained on 30x more data and reasoning 

comparable to models 50x larger.

phi-1 (1.3B)

Python coding model with 
perf. comparable to models 10x 
larger trained on 100x more data

phi-1.5 (1.3B)



The surprising Power of Small Language Models

• Can these emergent abilities be achieved at a smaller scale?

• Our line of work with the Phi models aims to answer this question
• SLMs that achieve on par performance with models of much higher scale

Natural language model 
with NL comparable to models 10x larger 
trained on 30x more data and reasoning 

comparable to models 50x larger.

phi-1.5 (1.3B)phi-1 (1.3B)

Python coding model with 
perf. comparable to models 10x 
larger trained on 100x more data

phi-2 (2.7B)



Phi-2 Performance



A skier slides down a frictionless slope of height 40m and length
80m. What's the skier's speed at the bottom?

The potential energy of the skier at the top of the slope is given by mgh, where m 
is the mass of the skier, g is the acceleration due to gravity, and h is the height of 
the slope. Since the slope is frictionless, all of the potential energy is converted 
to kinetic energy at the bottom of the slope. The kinetic energy of the skier is 
given by (1/2)mv^2, where v is the speed of the skier at the bottom of the slope. 
Equating the potential energy and kinetic energy, we get: mgh = (1/2)mv^2.

Simplifying, we get: v^2 = 2gh

Substituting the given values, we get:
v^2 = 2(9.8)(40)

v^2 = 784

v = 28 m/s

Therefore, the skier's speed at the bottom of the slope is 28 m/s.

Phi-2
(2.7B)

• Gemini Nano 2 (3.25B) • Gemini Ultra

Phi-2 Performance



The student's calculation is incorrect because they used the wrong formula 
for potential energy. The formula for potential energy is mgh, where m is the 
mass of the object, g is the acceleration due to gravity, and h is the height 
of the object.

Now we asked a student to give the answer and they replied 
with this calculation:

Start: E=mgL
End: E= (1/2)mv^2
mgL = (1/2)mv^2
v=sqrt(2gL)=sqrt(2x9.81x80)=39.6m/s

If the student is wrong, can you correct them?

Phi-2
(2.7B)

• Gemini Nano • Gemini Ultra

Phi-2 Performance



What is the secret sauce?



What is the secret sauce?

1- High-Quality Training Data: Textbooks are all you need [1]

[1] Gunasekar, Suriya, et al. "Textbooks Are All You Need." arXiv preprint arXiv:2306.11644 (2023).



Training Language Models for Coding

◦ Stack dataset : “every source code in GitHub”
◦ Dataset size: 1T tokens

Random code sample from the Stack

If we have a small dataset is focused on “text-book quality educational content”, 
we can learn the task better, even with a smaller model.



Building High-Quality Datasets
1. Filtering web data:

• GPT-4 can reliably classify documents based on “high educational value”.
• Challenge: Stack (Python) is 26B tokens (around $1M cost in 2023).
• Solution: label small fraction, then train a random forest classifier on it and use 

the classifier to filter the rest.



Building High-Quality Datasets
2. Create synthetic data:

• Synthetic textbooks: teach the model coding with natural language
• 1B tokens generated with GPT-3.5
• Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.) 

and low repetition
• Solution: inject creative randomness into the prompt [1]

[1] Eldan, Ronen, and Yuanzhi Li. “TinyStories: 
How Small Can Language Models Be and Still 
Speak Coherent English?” arXiv preprint 
arXiv:2305.07759 (2023).



Building High-Quality Datasets
2. Create synthetic data:

• Synthetic textbooks: teach the model coding with natural language
• 1B tokens generated with GPT-3.5
• Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.) 

and low repetition
• Solution: inject creative randomness into the prompt [1]

unfiltered web data



Building High-Quality Datasets
2. Create synthetic data:

• Synthetic textbooks: teach the model coding with natural language
• 1B tokens generated with GPT-3.5
• Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.) 

and low repetition
• Solution: inject creative randomness into the prompt

filtered web data + synthetic textbooks



Building High-Quality Datasets
2. Create synthetic data:

• CodeExercises: align the model to perform function completion tasks based on 
natural language instructions.

• <1M exercises with 0.2B tokens generated with GPT-3.5



Building High-Quality Datasets
2. Create synthetic data:

• CodeExercises: align the model to perform function completion tasks based on 
natural language instructions.

• <1M exercises with 0.2B tokens generated with GPT-3.5

filtered web data + synthetic 
textbooks, finetuned on 
CodeExercises



Comparison to Prior Models

2023 Aug       Code Llama                                            34B                2.6T                     53.7%       56.2%

among < 10B size models,
previous best was 30%



What is the secret sauce?

2- Best Practices to Scale up



Scaling up 
• Training Phi-1 using the “CodeTextbook → CodeExercises” recipe
• Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

• Training from scratch:  

Phi-1
(12K)

Phi-1
(36K) # training steps

Phi-1
small



Can we reuse Weights across Scales?
• Reusing weights from Phi-1-small (350M)
• Challenge: how to scale the dimensions?

1. Scaling number of layers:      
• # layers: 20 → 24

[1]

[1] Rae, Jack W., et al. "Scaling language models: Methods, analysis & insights from training gopher." arXiv preprint 
arXiv:2112.11446 (2021).



Can we reuse Weights across Scales?
• Reusing weights from Phi-1-small (350M)
• Challenge: how to scale the dimensions?

2. Scaling attention layer dimensions: 
• d_model: 1024 → 2048 
• # heads: 16 → 32

random initialization
Phi-1-small (350M) Weights

Wqkv                                                                                                                             



• Training Phi-1 using the “CodeTextbook → CodeExercises” recipe
• Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

• Training from Phi-1-small (weight reuse (WR)):  

Phi-1
(12K)

Phi-1
(36K)

Phi-1
small

WR
(12K)

WR
(36K)

Can we reuse Weights across Scales?



Can we reuse Weights across Scales?
• Reusing weights from Phi-1-small (350M)
• Challenge: how to scale the dimensions?

2. Scaling attention layer dimensions: 
• d_model: 1024 → 2048 
• # heads: 16 → 32

random initialization
Phi-1 (350M) Weights

Tiling

WqkvWqkv                                                                                                                             



Can we reuse Weights across Scales?
• Training Phi-1 using the “CodeTextbook → CodeExercises” recipe
• Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

• Training from Phi-1-small (weight reuse (WR)):  

Phi-1
(12K)

Phi-1
(36K)

Phi-1
small

WR
(12K)

WR
(36K)

WR + Tile
(12K)

WR + Tile
(36K)

Model Model
size

Dataset
size

HumanEval
(pass@1)

Code Llama 34B 2.6T 53.7

Phi-1 1.3B 7B 50.6

Phi-1 (WR + Tile) 1.3B 7B 55.5



Scaling up Phi-1.5 to Phi-2

• Better performance with weight reuse

+0-2.2%
+3.8%

+1.7-6.7%



Conclusion

• A good, general, SLM is achievable with

• generation and utilization of data with "textbook quality“, in contrast to 

conventional web data.

• incorporation of best practices for scaling up to enhance overall 

performance.



Thanks For Listening!

@mojanjp

mojavaheripi@microsoft.com


	Slide 1: The Surprising Power of  Small Language Models  Mojan Javaheripi Microsoft Research   
	Slide 2: Moore’s Law of Language Models
	Slide 3: The power of Large Language Models
	Slide 4: The surprising Power of Small Language Models
	Slide 5: The surprising Power of Small Language Models
	Slide 6: The surprising Power of Small Language Models
	Slide 7: The surprising Power of Small Language Models
	Slide 8: Phi-2 Performance
	Slide 9
	Slide 10
	Slide 11: What is the secret sauce?
	Slide 12: What is the secret sauce?
	Slide 13: Training Language Models for Coding
	Slide 14: Building High-Quality Datasets
	Slide 15: Building High-Quality Datasets
	Slide 16: Building High-Quality Datasets
	Slide 17: Building High-Quality Datasets
	Slide 18: Building High-Quality Datasets
	Slide 19: Building High-Quality Datasets
	Slide 20: Comparison to Prior Models
	Slide 21: What is the secret sauce?
	Slide 22: Scaling up 
	Slide 23: Can we reuse Weights across Scales?
	Slide 24: Can we reuse Weights across Scales?
	Slide 25: Can we reuse Weights across Scales?
	Slide 26: Can we reuse Weights across Scales?
	Slide 27: Can we reuse Weights across Scales?
	Slide 28: Scaling up Phi-1.5 to Phi-2
	Slide 29: Conclusion
	Slide 30: Thanks For Listening!  

