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Moore’s Law of Language Models
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The power of Large Language Models

Figure from “Sparks of Artificial General Intelligence: Early experiments with GPT-4”, 
arXiv preprint arXiv:2303.12712 (2023).



The surprising Power of Small Language Models

• Can these emergent abilities be achieved at a smaller scale?

• Our line of work with the Phi models aims to answer this question
• SLMs that achieve on par performance with models of much higher scale
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• Specialist SLMs are possible
• What about a general model?
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Phi-2 Performance



A skier slides down a frictionless slope of height 40m and length
80m. What's the skier's speed at the bottom?

The potential energy of the skier at the top of the slope is given by mgh, where m 
is the mass of the skier, g is the acceleration due to gravity, and h is the height of 
the slope. Since the slope is frictionless, all of the potential energy is converted 
to kinetic energy at the bottom of the slope. The kinetic energy of the skier is 
given by (1/2)mv^2, where v is the speed of the skier at the bottom of the slope. 
Equating the potential energy and kinetic energy, we get: mgh = (1/2)mv^2.

Simplifying, we get: v^2 = 2gh

Substituting the given values, we get:
v^2 = 2(9.8)(40)

v^2 = 784

v = 28 m/s

Therefore, the skier's speed at the bottom of the slope is 28 m/s.

Phi-2
(2.7B)

• Gemini Nano 2 (3.25B) • Gemini Ultra

Phi-2 Performance



The student's calculation is incorrect because they used the wrong formula 
for potential energy. The formula for potential energy is mgh, where m is the 
mass of the object, g is the acceleration due to gravity, and h is the height 
of the object.

Now we asked a student to give the answer and they replied 
with this calculation:

Start: E=mgL
End: E= (1/2)mv^2
mgL = (1/2)mv^2
v=sqrt(2gL)=sqrt(2x9.81x80)=39.6m/s

If the student is wrong, can you correct them?

Phi-2
(2.7B)

• Gemini Nano • Gemini Ultra

Phi-2 Performance



What is the secret sauce?



What is the secret sauce?

1- High-Quality Training Data: Textbooks are all you need [1]

[1] Gunasekar, Suriya, et al. "Textbooks Are All You Need." arXiv preprint arXiv:2306.11644 (2023).



Training Language Models for Coding

◦ Stack dataset : “every source code in GitHub”
◦ Dataset size: 1T tokens

Random code sample from the Stack

If we have a small dataset is focused on “text-book quality educational content”, 
we can learn the task better, even with a smaller model.



Building High-Quality Datasets
1. Filtering web data:

• GPT-4 can reliably classify documents based on “high educational value”.
• Challenge: Stack (Python) is 26B tokens (around $1M cost in 2023).
• Solution: label small fraction, then train a random forest classifier on it and use 

the classifier to filter the rest.



Building High-Quality Datasets
2. Create synthetic data:

• Synthetic textbooks: teach the model coding with natural language
• 1B tokens generated with GPT-3.5
• Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.) 

and low repetition
• Solution: inject creative randomness into the prompt [1]

[1] Eldan, Ronen, and Yuanzhi Li. “TinyStories: 
How Small Can Language Models Be and Still 
Speak Coherent English?” arXiv preprint 
arXiv:2305.07759 (2023).
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Building High-Quality Datasets
2. Create synthetic data:

• CodeExercises: align the model to perform function completion tasks based on 
natural language instructions.

• <1M exercises with 0.2B tokens generated with GPT-3.5



Building High-Quality Datasets
2. Create synthetic data:

• CodeExercises: align the model to perform function completion tasks based on 
natural language instructions.

• <1M exercises with 0.2B tokens generated with GPT-3.5

filtered web data + synthetic 
textbooks, finetuned on 
CodeExercises



Comparison to Prior Models

2023 Aug       Code Llama                                            34B                2.6T                     53.7%       56.2%

among < 10B size models,
previous best was 30%



What is the secret sauce?

2- Best Practices to Scale up



Scaling up 
• Training Phi-1 using the “CodeTextbook → CodeExercises” recipe
• Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

• Training from scratch:  

Phi-1
(12K)

Phi-1
(36K) # training steps

Phi-1
small



Can we reuse Weights across Scales?
• Reusing weights from Phi-1-small (350M)
• Challenge: how to scale the dimensions?

1. Scaling number of layers:      
• # layers: 20 → 24

[1]

[1] Rae, Jack W., et al. "Scaling language models: Methods, analysis & insights from training gopher." arXiv preprint 
arXiv:2112.11446 (2021).



Can we reuse Weights across Scales?
• Reusing weights from Phi-1-small (350M)
• Challenge: how to scale the dimensions?

2. Scaling attention layer dimensions: 
• d_model: 1024 → 2048 
• # heads: 16 → 32

random initialization
Phi-1-small (350M) Weights

Wqkv                                                                                                                             
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Can we reuse Weights across Scales?
• Reusing weights from Phi-1-small (350M)
• Challenge: how to scale the dimensions?

2. Scaling attention layer dimensions: 
• d_model: 1024 → 2048 
• # heads: 16 → 32

random initialization
Phi-1 (350M) Weights

Tiling

WqkvWqkv                                                                                                                             



Can we reuse Weights across Scales?
• Training Phi-1 using the “CodeTextbook → CodeExercises” recipe
• Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

• Training from Phi-1-small (weight reuse (WR)):  

Phi-1
(12K)

Phi-1
(36K)

Phi-1
small

WR
(12K)

WR
(36K)

WR + Tile
(12K)

WR + Tile
(36K)

Model Model
size

Dataset
size

HumanEval
(pass@1)

Code Llama 34B 2.6T 53.7

Phi-1 1.3B 7B 50.6

Phi-1 (WR + Tile) 1.3B 7B 55.5



Scaling up Phi-1.5 to Phi-2

• Better performance with weight reuse

+0-2.2%
+3.8%

+1.7-6.7%



Conclusion

• A good, general, SLM is achievable with

• generation and utilization of data with "textbook quality“, in contrast to 

conventional web data.

• incorporation of best practices for scaling up to enhance overall 

performance.



Thanks For Listening!

@mojanjp

mojavaheripi@microsoft.com
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