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Data Augmentation Is An Effective Tool
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[1] Cubuk et al., RandAugment: Practical automated data augmentation with a reduced search space, NeurIPS 2020.

[2] Yun et al., CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, ICCV 2020.
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[1] Cubuk et al., RandAugment: Practical automated data augmentation with a reduced search space, NeurIPS 2020.

[2] Yun et al., CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, ICCV 2020.

● But, augmentations currently require a good intuition about your dataset.
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We Need Augmentations That Adapt To Your Dataset
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Real Images
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Real Images Augmentations
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Stable Diffusion

Engine For

Data Augmentation

Real Images Augmentations



DA-Fusion: Data Augmentation With Diffusion

9[3] Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022.

[7] Rinon, Gal, et al., An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion, CVPR 2022.

● Key idea: shared context in your images controls the augmentation.
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DA-Fusion: Data Augmentation With Diffusion
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[7] Rinon, Gal, et al., An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion, CVPR 2022.

[8] Chenlin, Meng, et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022.
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How Do We Evaluate DA-Fusion?
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Question: How much do augmentations from DA-Fusion improve classification?
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Question: How much do augmentations from DA-Fusion improve classification?

● Six few-shot classification tasks from literature

Fine-Grain ConceptsCommon Concepts
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Question: How much do augmentations from DA-Fusion improve classification?

● Six few-shot classification tasks from literature and one we contribute.

Leafy

Spurge

Fine-Grain ConceptsCommon Concepts Novel Concepts
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Question: How much do augmentations from DA-Fusion improve classification?

● Given a handful of real images

Exemplar 

Images
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Question: How much do augmentations from DA-Fusion improve classification?

● Given a handful of real images, generate augmentations
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Question: How much do augmentations from DA-Fusion improve classification?

● Given a handful of real images, generate augmentations

● Train classifiers on a mix of real and synthetic data

Stable

Diffusion

Exemplar 

Images

Synthetic 

Images

Train
Augment



DA-Fusion Improves Few-Shot Learning
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[1] Cubuk et al., RandAugment: Practical automated data augmentation with a reduced search space, NeurIPS 2020.

[2] He et al., Is synthetic data from generative models ready for image recognition?, ICLR 2023.



DA-Fusion Has Consistent Performance

32

● DA-Fusion has strong performance for all types of concepts.

[1] Cubuk et al., RandAugment: Practical automated data augmentation with a reduced search space, NeurIPS 2020.

[2] He et al., Is synthetic data from generative models ready for image recognition?, ICLR 2023.

Leafy

Spurge



Strong Performance ✔
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Strong Performance ✔

How Do You Control The Augmentation?
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When Is Additional Control Necessary?

Real images are often cluttered with distracting concepts.
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When Is Additional Control Necessary?

Real images are often cluttered with distracting concepts.
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Which concept should DA-Fusion generate: cats and/or dogs?



How Do You Control What Concept Is Learned?

Implicit Solution: select better images without distracting concepts.
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How Do You Control What Concept Is Learned?

Implicit Solution: select better images without distracting concepts.
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This might be costly, what else can we do?



How Do You Control What Concept Is Learned?

Explicit Solution: prompt with context about the objects you want ignored.
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How Do You Control What Concept Is Learned?

Explicit Solution: prompt with context about the objects you want ignored.

● Why? Prompts can supplement information when images have ambiguity.
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DA-Fusion



How Do You Control What Concept Is Learned?

Explicit Solution: prompt with context about the objects you want ignored.

● Why? Prompts can supplement information when images have ambiguity.
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DA-Fusion

DA-Fusion
“ a <y> to the 

right of the dog ”



Real-World Evaluation
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Leafy spurge (Euphorbia esula): A Problematic Weed in N. America

44



Locations of spurge surveys in western Montana

45

● We surveyed 40 sites varied in land-use history and plant community 

composition



Botanists verified spurge presence at survey sites

● We searched for spurge within nine 10 x 10 meter plots



Post-processing: Identify plot boundaries

● Example: surveyed nine plots at each site. Markers visible in the image were 

used to crop plots.



Drone then imaged surveyed areas



Post-processing: Four-crop and verify

● We further subdivided imagery 

into quarters of 250 x 250 

pixels in size (approximately 

3.5 x 3.5 m).



Aerial spurge images distinct from LAION dataset

● Top-down imagery of prairie 

ecosystems from 50m above the 

ground.

● Existing outside the domain of 

LAION and other foundation model 

training sets. ‘

● This makes these data well-suited 

for few-shot research. 

LAION-5B Schuhmann et al. [2022]



+ grassland + snow

original generation + mountain

Results + Synthetic Generations



Drone flight plan

Leafy Spurge Dataset V2

● We are working on the next version of the spurge dataset that is well-suited 

for mapping spurge presence at scale with a public release.  







Fine-scale Classification Maps 

● Fine-scale classification will 

enable more effective 

management of leafy spurge and 

rapidly respond to these 

outbreaks.

● We hope to extend this approach 

to other species to monitor 

ecosystems at scale and rapidly 

respond to ecological change in 

near real-time. 
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Bear individual retrieval

Landscape change detection

Elevation paired with RGB

Non-visible spectra (plant health)

Ecologist Collaborators Offer a Rich Source of Unique Datasets
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Read more and check out the code: btrabuc.co/da-fusion

Brandon Trabucco Russ Salakhutdinov

Questions

Thanks For Listening!

Kyle Doherty Max Gurinas

Code
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