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Tabular Data

Example:

Acct District Acct Since Date Amount Status

Prague 1993-02-26 1994-01-05 80952 A

Tabor 1995-04-07 1996-04-29 30276 B

Prague 1993-02-26 1997-12-08 30276 A

Strakonice 1997-08-18 1998-10-14 318480 D

Strakonice 1997-08-08 1998-04-19 110736 C

... ... ... ... ...
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For such prediction tasks, standard statistical models still

dominate, due to their superior performance [1].

Page 4 of 11Deng et al. BMC Medical Informatics and Decision Making          (2021) 21:338 

obtained from any of the single learning algorithms 
alone [25]. !e ensemble learning framework was built 
on the gradient boosting decision tree (GBDT) that has 
a wide range of commercial and academic applications 
[26, 27]. To be specific, gradient boosting (GB) frame-
work constructs additive regression models by sequen-
tially fitting a weak classifier to current residuals [28, 
29], as shown in Fig. 2. !us, newly trained weak classi-
fiers will correct the previous weak classifiers’ misjudg-
ment, adaptively improving the prediction performance 
with high efficiency [30]. !e final model aggregates the 
results from all weak classifiers to achieve a “strong” 
classifier as an ensemble. And GBDT is exactly the GB 
that utilizes decision trees as the weak classifiers, with 
a loss function to detect the residuals, such as mean 
squared error for regression or logarithmic loss for 
classification. By using 71 data sets originating from 
different domains and publicly available at UCI and 
KEEL repositories, GBDT exceeds or matches the pre-
diction performance of other 10 popular algorithms for 
classification, including support vector machines, deep 
neural network, feedforward neural network, random 
forests, naïve Bayes, logistic regression and so on, and 
achieve the best accuracy ranking overall [31].

In the study, we implemented GBDT based on Light-
gbm, a gradient boosting framework originally developed 
by Microsoft, which has shown its power in reducing the 
prediction bias in biology and computer science in recent 
years [32, 33]. To solve the high-dimensionality problem, 
we implemented lightgbm with L1 regularization [34], 
bagging [35] on samples (bootstrapping), and bagging on 
features.

To benchmark the model’s prediction accuracy, we 
applied logistic regression (with L2 regularization), ran-
dom forest, classification and regression tree (CART), 
and naïve Bayes method. All machine learning algorithms 
were implemented in Python, and the code is available in 
online resources.

Evaluation
Following related frontier studies, this study used AUC 
on the test set as the metric of prediction. We took cross 
validation (CV) [36] with 30% samples as validation sets. 
As the incidence of neonatal hyperbilirubinemia is about 
5% in practice, resulting in an unbalance problem that 
positive sample rates might be sensitive to sampling seed. 
!erefore, we controlled the positive sample ratio in each 
(train, validation) couple to be the same during sampling. 
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Fig. 2 The architecture of Gradient Boosting Decision Tree

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Gradient-Boosted Decision Trees [2]. Figure taken from [3].
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CanYou Use Deep Learning?

Most methods based on the Transformer architecture [4]

Examples:

TabTransformer (2020) [5]

TabPFN (2023) [6]
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However...

What if our data is relational – more than 1 table, with

foreign keys?
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Tabular vs. Relational Data

Acct District Acct Since Date Amount Status

Prague 1993-02-26 1994-01-05 80952 A

Tabor 1995-04-07 1996-04-29 30276 B

Prague 1993-02-26 1997-12-08 30276 A

Strakonice 1997-08-18 1998-10-14 318480 D

Strakonice 1997-08-08 1998-04-19 110736 C

... ... ... ... ...

Account Id Date Amount Status

2 1994-01-05 80952 A

19 1996-04-29 30276 B

2 1997-12-08 30276 A

37 1998-10-14 318480 D

38 1998-04-19 110736 C

... ... ... ...

Account Id District Id Frequency Date Created ...

2 1 Monthly 1993-02-26 ...

19 21 Monthly 1995-04-07 ...

37 20 Monthly 1997-08-18 ...

38 20 Weekly 1997-08-08 ...

... ... ... ... ...

Account Id District Frequency Date Created ...

2 Prague Monthly 1993-02-26 ...

19 Tabor Monthly 1995-04-07 ...

37 Strakonice Monthly 1997-08-18 ...

38 Strakonice Weekly 1997-08-08 ...

... ... ... ... ...

District Id District Location ...

1 Prague Prague ...

20 Strakonice S Bohemia ...

21 Tabor S Bohemia ...

... ... ... ...
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HowDoWeTrain On Relational

Data?

First idea: Convert to tabular, then use tabular learners

Naively: Universal relation – join all tables

Expensive!

Difficult to observe the complex original data

structure

Propositionalization [7]

This approach dominates the industry [8, 9]

Less expensive

Helps the predictor understand the original relational

structure

Loss of information :(

Either expensive, or

principially suboptimal!
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End-to-end Deep Learning?

CanWe Fully Preserve The Data Structure?

Can we utilize the ability of deep learning to find its

own optimal latent representation of the data?

GraphNeural Networks [10]

Transformer architecture [4]

Incorporate both intra-relational (attribute) and

inter-relational (foreign key) structure within the

message-passing scheme
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Our Proposal
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Message Passing on Orig. Example
Two-level Multi-relational Hypergraph

L1 A2 D1

L3

L2 A19 D21

L4 A37 D20

L5 A38

Account Id Date Amount Status

2 1994-01-05 80952 A

19 1996-04-29 30276 B

2 1997-12-08 30276 A

37 1998-10-14 318480 D

38 1998-04-19 110736 C

... ... ... ...

Account Id District Id Frequency Date Created ...

2 1 Monthly 1993-02-26 ...

19 21 Monthly 1995-04-07 ...

37 20 Monthly 1997-08-18 ...

38 20 Weekly 1997-08-08 ...

... ... ... ... ...

District Id District Location ...

1 Prague Prague ...

20 Strakonice S Bohemia ...

21 Tabor S Bohemia ...

... ... ... ...
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Additional Offerings1

1 Load SQL databases directly

2 Optionally auto-detect attribute semantics (numeric

vs. categorical)

3 Per-type handling and embedding

4 Directly usable with existing GNN and Transformer

implementations

Work-in-progress Python library that extends PyTorch

Geometric [11].

1Tested on a large library of example relational datasets [12].

Unavailable anymore at the time of writing. We are considering

re-publishing the datasets ourselves.
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Results
category: Tab. Rel.2 Prop. NeSy3 Ours

datasets MLP RDN-b [15] getML [9] CILP [16] I_1 I_2 I_3

PTE N/A 44.94% 100.00% 100.00% 100.00% 83.05% 100.00%

university 81.82% 81.82% 54.55% 81.82% 100.00% 100.00% 100.00%

NCAA 100.00% 47.50% 100.00% 78.75% 67.92% 71.69% 67.92%

cs N/A 63.33% 96.67% 96.67% 100.00% 100.00% 100.00%

UTube N/A 84.15% 98.93% 99.39% 98.16% 98.16% 98.16%

mutagen 87.50% 85.71% 82.86% 92.86% 94.59% 94.59% 94.59%

Dunur N/A 23.17% 97.56% 97.56% 94.54% 94.54% 94.54%

MuskSmall N/A 77.78% 74.07% 66.67% 83.33% 77.77% 50.00%

WebKP N/A 82.51% 83.04% 65.40% 68.57% 51.99% 65.14%

DCG N/A 72.57% 65.17% 61.06% 73.89% 65.92% 79.20%

Pima N/A 32.17% 77.11% 75.65% 58.82% 73.20% 74.50%

CiteSeer N/A 66.16% 47.41% 37.36% 50.15% 51.51% 37.76%

Carcinogen. N/A 53.06% 62.07% 65.31% 64.61% 63.07% 60.00%

Toxicology N/A 63.73% 57.02% 72.55% 61.76% 67.64% 61.76%

Chess 40.91% 34.09% 33.64% 48.86% 50.84% 50.84% 50.84%

Atheroscler. 26.72% 18.10% 22.41% 28.45% 33.76% 32.46% 31.16%

2Statistical relational learning [13]
3Neuro-symbolic integration [14]
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