

A Deep Learning Blueprint for Relational Databases

TRL @ NeurIPS 2023

Jan Neumann Faculty of Electrical Engineering, CTU in Prague November 2023

Background

Tabular Data

Example:

Acct District	Acct Since	Date	Amount	Status
Prague	1993-02-26	1994-01-05	80952	Α
Tabor	1995-04-07	1996-04-29	30276	В
Prague	1993-02-26	1997-12-08	30276	Α
Strakonice	1997-08-18	1998-10-14	318480	D
Strakonice	1997-08-08	1998-04-19	110736	С
				•••

For such prediction tasks, standard statistical models still dominate, due to their superior performance [1].

Gradient-Boosted Decision Trees [2]. Figure taken from [3].

Can You Use Deep Learning?

- Most methods based on the Transformer architecture [4]
- Examples:
 - TabTransformer (2020) [5]
 - TabPFN (2023) [6]

However...

What if our data is relational – more than 1 table, with foreign keys?

		-	Account	t Id	Date	An	nount	Status	
			2	1	994-01-0	5 8	0952	Α	
E F			— 19	1	996-04-2	9 30	0276	В	
		<u> </u>	_ 2	1	997-12-0	8 3	0276	Α	
\rightarrow			— 37	1	998-10-1	4 31	8480	D	
		-	- 38	1	998-04-1	9 11	0736	С	
	Acco	oun	t Id	District	ld Fre	quency	Date	Created	
	└>	2		1 -	M	onthly	199	3-02-26	
		19		21	M	onthly	199	5-04-07	
		37		- 20	м	onthly	199	7-08-18	
		38		- 20	W	leekly	199	7-08-08	
		Γ	Distri	ct ld	District	L	ocation		
		F	1	•	Prague	1	Prague		
			20)	Strakonic	e SE	Bohemia		
			L_> 21	l	Tabor	SE	Bohemia		

Acct District	Acct Since	Date	Amount	Status
Prague	1993-02-26	1994-01-05	80952	А
Tabor	1995-04-07	1996-04-29	30276	В
Prague	1993-02-26	1997-12-08	30276	А
Strakonice	1997-08-18	1998-10-14	318480	D
Strakonice	1997-08-08	1998-04-19	110736	С

	Acct District	Acct Since	Date	Amount	Status
	Prague	1993-02-26	1994-01-05	80952	Α
	Tabor	1995-04-07	1996-04-29	30276	в
	Prague	1993-02-26	1997-12-08	30276	Α
	Strakonice	1997-08-18	1998-10-14	318480	D
	Strakonice	1997-08-08	1998-04-19	110736	с
L					

	Acco	unt Id D	ate	Amount	Status	
		2 1994	-01-05	80952	Α	
	1	9 1996	-04-29	30276	в	
		2 1997	-12-08	30276	Α	
_	3	7 1998	-10-14	318480	D	
	3	8 1998	-04-19	110736	с	
			_			
	Account Id	District	Freque	ncy Da	te Created	
	→ 2	Prague	Month	ly 19	93-02-26	
	▶ 19	Tabor	Month	ly 19	95-04-07	
	▶ 37	Strakonice	Month	ly 19	97-08-18	
	> 38	Strakonice	Week	y 19	97-08-08	

CTU CECH TECHNICAL UNDERSTITY UNDERSTITY

A Deep Learning Blueprint for Relational Databases TRL @ NeurIPS 2023

Account Id	Date	Amount	Status
2	1994-01-05	80952	А
19	1996-04-29	30276	В
2	1997-12-08	30276	А
37	1998-10-14	318480	D
38	1998-04-19	110736	с

Account	ld	District Id	Frequency	Date Created	
2		1 7	Monthly	1993-02-26	
19		21	Monthly	1995-04-07	
37		20	Monthly	1997-08-18	
38	-	20	Weekly	1997-08-08	

District Id	District	Location	
1-	Prague	Prague	
	Strakonice	S Bohemia	
→ 21	Tabor	S Bohemia	

		-	Account	t Id	Date	An	nount	Status	
			2	1	994-01-0	5 8	0952	Α	
			— 19	1	996-04-2	9 30	0276	В	
		<u> </u>	_ 2	1	997-12-0	8 3	0276	Α	
\rightarrow			— 37	1	998-10-1	4 31	8480	D	
		-	- 38	1	998-04-1	9 11	0736	с	
	Acco	oun	t Id	District	ld Fre	quency	Date	Created	
	└─▶	2		1 -	M	onthly	199	3-02-26	
		19		21	M	onthly	199	5-04-07	
		37		- 20	м	onthly	199	7-08-18	
		38		- 20	W	leekly	199	7-08-08	
		Γ	Distri	ct ld	District	L	ocation		
		F	1	•	Prague	1	Prague		
			20)	Strakonic	e SE	Bohemia		
			L_> 21	l	Tabor	SE	Bohemia		

How Do We Train On Relational Data?

How Do We Train On Relational Data?

First idea: **Convert to tabular, then use tabular learners**Naively: Universal relation – join all tables

How Do We Train On Relational Data?

- Naively: Universal relation join all tables
 - Expensive!

How Do We Train On Relational Data?

- Naively: Universal relation join all tables
 - Expensive!
 - Difficult to observe the complex original data structure

How Do We Train On Relational Data?

- Naively: Universal relation join all tables
 - Expensive!
 - Difficult to observe the complex original data structure
- Propositionalization [7]

How Do We Train On Relational Data?

- Naively: Universal relation join all tables
 - Expensive!
 - Difficult to observe the complex original data structure
- Propositionalization [7]
 - This approach dominates the industry [8, 9]

How Do We Train On Relational Data?

- Naively: Universal relation join all tables
 - Expensive!
 - Difficult to observe the complex original data structure
- Propositionalization [7]
 - This approach dominates the industry [8, 9]
 - Less expensive

How Do We Train On Relational Data?

- Naively: Universal relation join all tables
 - Expensive!
 - Difficult to observe the complex original data structure
- Propositionalization [7]
 - This approach dominates the industry [8, 9]
 - Less expensive
 - Helps the predictor understand the original relational structure

How Do We Train On Relational Data?

- Naively: Universal relation join all tables
 - Expensive!
 - Difficult to observe the complex original data structure
- Propositionalization [7]
 - This approach dominates the industry [8, 9]
 - Less expensive
 - Helps the predictor understand the original relational structure
 - Loss of information :(

How Do We Train On Relational Data?

First idea: Convert to tabular, then use tabular learners

Either expensive, or principially suboptimal!

End-to-end Deep Learning?

Can We Fully Preserve The Data Structure?

End-to-end Deep Learning?

- Can We Fully Preserve The Data Structure?
- Can we utilize the ability of deep learning to find its own optimal latent representation of the data?

End-to-end Deep Learning?

- Can We Fully Preserve The Data Structure?
- Can we utilize the ability of deep learning to find its own optimal latent representation of the data?
- Graph Neural Networks [10]
- Transformer architecture [4]

End-to-end Deep Learning?

- Can We Fully Preserve The Data Structure?
- Can we utilize the ability of deep learning to find its own optimal latent representation of the data?
- Graph Neural Networks [10]
- Transformer architecture [4]
- Incorporate both intra-relational (attribute) and inter-relational (foreign key) structure within the message-passing scheme

Our Proposal

Message Passing on Orig. Example

Two-level Multi-relational Hypergraph

		Account Id	Date	Amount	Status]
		\rightarrow 2	1994-01-05	80952	Α	1
$(L1) \leftrightarrow (A2) \leftrightarrow (D1)$		ightarrow 19	1996-04-29	30276	в	
		\rightarrow 2	1997-12-08	30276	Α	
		\rightarrow 37	1998-10-14	318480	D	
		→ 38	1998-04-19	110736	с	
(L3)						
	Accoun	t Id Distr	ict Id Frequ	iency Dat	e Created	
	$\rightarrow 2$	1	l ← Mon	thly 19	93-02-26	
	\rightarrow 19	2	1 Mon	thly 19	95-04-07	
	→ 3 7		0 Mon	thly 19	97-08-18	
\sim \sim \rightarrow $+$	—→ 38		0 Wee	ekly 19	97-08-08	
$(L4) \rightarrow (A37) \rightarrow (D20)$						
		District Id	District	Location		
\frown		1←	Prague	Prague		
$(15) \leftrightarrow (A38)$		→ 20	Strakonice	S Bohemia	a	
		└─ → 21	Tabor	S Bohemi	a	
\mathbf{i}						

Message Passing on Orig. Example

Two-level Multi-relational Hypergraph

13/16

CTU CECH TECHNICAL UNDERSITY UNDERSITY

A Deep Learning Blueprint for Relational Databases TRL @ NeurIPS 2023

Additional Offerings¹

Load SQL databases directly

Additional Offerings¹

- **1** Load SQL databases directly
- Optionally auto-detect attribute semantics (numeric vs. categorical)

- **1** Load SQL databases directly
- 2 Optionally auto-detect attribute semantics (numeric vs. categorical)
- Per-type handling and embedding

- **1** Load SQL databases directly
- Optionally auto-detect attribute semantics (numeric vs. categorical)
- Per-type handling and embedding
- **4** Directly usable with existing GNN and Transformer implementations

- **1** Load SQL databases directly
- 2 Optionally auto-detect attribute semantics (numeric vs. categorical)
- Per-type handling and embedding
- 4 Directly usable with existing GNN and Transformer implementations

Work-in-progress Python library that extends PyTorch Geometric [11].

- **1** Load SQL databases directly
- 2 Optionally auto-detect attribute semantics (numeric vs. categorical)
- Per-type handling and embedding
- 4 Directly usable with existing GNN and Transformer implementations

Work-in-progress Python library that extends PyTorch Geometric [11].

¹Tested on a large library of example relational datasets [12]. Unavailable anymore at the time of writing. We are considering re-publishing the datasets ourselves.

Results

Results

category:	Tab.	Rel. ²	Prop.	NeSy ³		Ours	
datasets	MLP	RDN-b [15]	getML [9]	CILP [16]	I_1	I_2	I_3
PTE	N/A	44.94%	100.00%	100.00%	100.00%	83.05%	100.00%
university	81.82%	81.82%	54.55%	81.82%	100.00%	100.00%	100.00%
NCAA	100.00%	47.50%	100.00%	78.75%	67.92%	71.69%	67.92%
cs	N/A	63.33%	96.67%	96.67%	100.00%	100.00%	100.00%
UTube	N/A	84.15%	98.93%	99.39%	98.16%	98.16%	98.16%
mutagen	87.50%	85.71%	82.86%	92.86%	94.59%	94.59%	94.59%
Dunur	N/A	23.17%	97.56%	97.56%	94.54%	94.54%	94.54%
MuskSmall	N/A	77.78%	74.07%	66.67%	83.33%	77.77%	50.00%
WebKP	N/A	82.51%	83.04%	65.40%	68.57%	51.99%	65.14%
DCG	N/A	72.57%	65.17%	61.06%	73.89%	65.92%	79.20%
Pima	N/A	32.17%	77.11%	75.65%	58.82%	73.20%	74.50%
CiteSeer	N/A	66.16%	47.41%	37.36%	50.15%	51.51%	37.76%
Carcinogen.	N/A	53.06%	62.07%	65.31%	64.61%	63.07%	60.00%
Toxicology	N/A	63.73%	57.02%	72.55%	61.76%	67.64%	61.76%
Chess	40.91%	34.09%	33.64%	48.86%	50.84%	50.84%	50.84%
Atheroscler.	26.72%	18.10%	22.41%	28.45%	33.76%	32.46%	31.16%

²Statistical relational learning [13] ³Neuro-symbolic integration [14]

References I

- Ravid Shwartz-Ziv and Amitai Armon. Tabular Data: Deep Learning Is Not All You Need. Nov. 23, 2021. pol: 10.48550/arXiv.2106.03253. URL: http://arxiv.org/abs/2106.03253 (visited on 11/25/2023). preprint.
- [2] Jerome H. Friedman. "Greedy Function Approximation: A Gradient Boosting Machine.". In: The Annals of Statistics 29.5 (Oct. 2001), pp. 1189–1232. pol: 10.1214/aos/1013203451.
- [3] Haowen Deng et al. "Ensemble Learning for the Early Prediction of Neonatal Jaundice with Genetic Features". In: BMC Medical Informatics and Decision Making 21 (Dec. 1, 2021). DOI: 10.1186/s12911-021-01701-9.
- [4] Ashish Vaswani et al. "Attention Is All You Need". In: Advances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc., 2017.
- [5] Xin Huang et al. TabTransformer: Tabular Data Modeling Using Contextual Embeddings. Dec. 11, 2020. DOI: 10.48550/arXiv.2012.06678. URL: http://arxiv.org/abs/2012.06678 (visited on 11/25/2023). preprint.
- [6] Noah Hollmann et al. TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second. Sept. 16, 2023. pol: 10.48550/arXiv.2207.01848. URL: http://arXiv.org/abs/2207.01848 (visited on 11/25/2023). preprint.
- [7] Stefan Kramer, Nada Lavrač, and Peter Flach. "Propositionalization Approaches to Relational Data Mining". In: *Relational Data Mining*. Ed. by Sašo Džeroski and Nada Lavrač. Berlin, Heidelberg: Springer, 2001, pp. 262–291. DOI: 10.1007/978-3-662-04599-2_11.

References II

- [8] The Alteryx. Featuretools. URL: https://www.featuretools.com/ (visited on 11/26/2023).
- [9] The SQLNet Company GmbH. getML. URL: https://www.getml.com/ (visited on 11/26/2023).
- [10] Zonghan Wu et al. "A Comprehensive Survey on Graph Neural Networks". In: IEEE Transactions on Neural Networks and Learning Systems 32.1 (Jan. 2021), pp. 4–24. doi: 10.1109/TINLS.2020.2978386.
- [11] PyTorch Geometric Team. PyTorch Geometric. URL: https://pytorch-geometric.readthedocs.io/en/latest/(visited on 11/26/2023).
- [12] Jan Motl and Oliver Schulte. The CTU Prague Relational Learning Repository. Nov. 10, 2015. DOI: 10.48550/arXiv.1511.03086.URL:http://arxiv.org/abs/1511.03086 (visited on 11/26/2023). preprint.
- Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. MIT Press, 2007. 602 pp.
- [14] Barbara Hammer and Pascal Hitzler, eds. Perspectives of Neural-Symbolic Integration. Red. by Janusz Kacprzyk. Vol. 77. Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2007. Doi: 10.1007/978-3-540-73954-8.
- [15] Sriraam Natarajan et al. "Gradient-Based Boosting for Statistical Relational Learning: The Relational Dependency Network Case". In: Mach Learn 86.1 (Jan. 1, 2012), pp. 25–56. DOI: 10.1007/s10994-011-5244-9.

References III

[16] Manoel V. M. França, Gerson Zaverucha, and Artur S. d'Avila Garcez. "Fast Relational Learning Using Bottom Clause Propositionalization with Artificial Neural Networks". In: Mach Learn 94.1 (Jan. 1, 2014), pp. 81–104. DOI: 10.1007/s10994-013-5392-1.