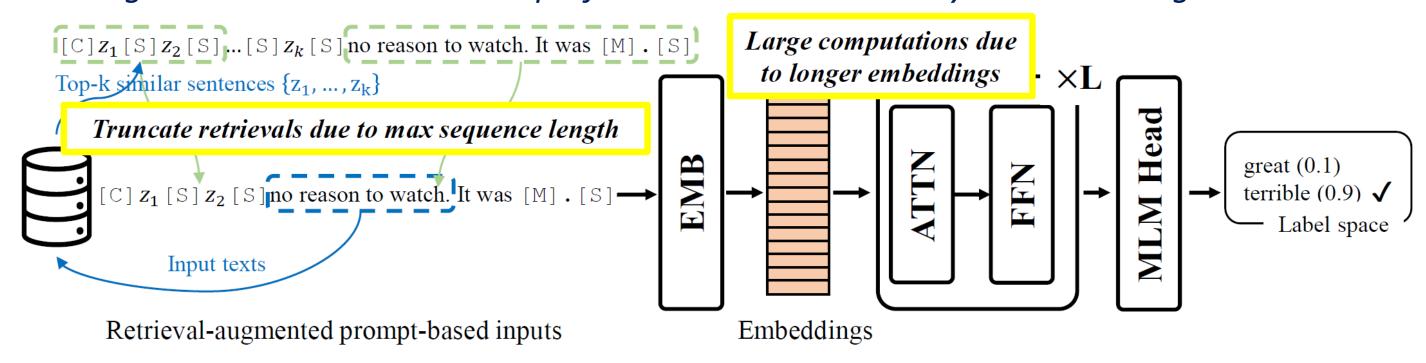
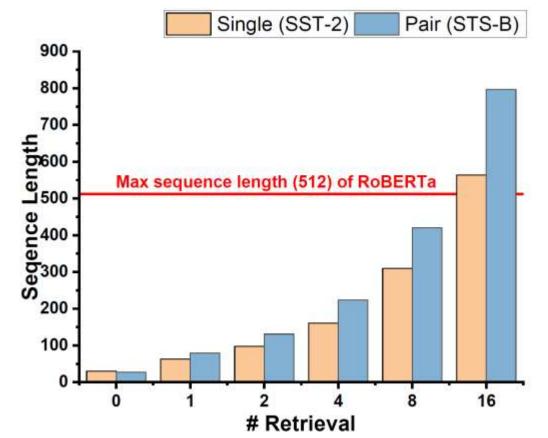
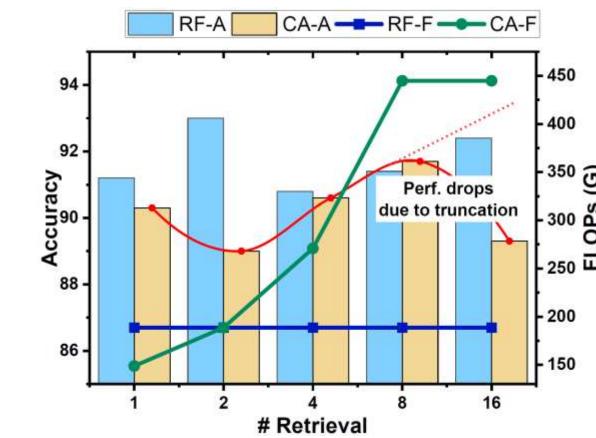
Improving Natural Language Understanding with Computation-Efficient Retrieval Representation Fusion

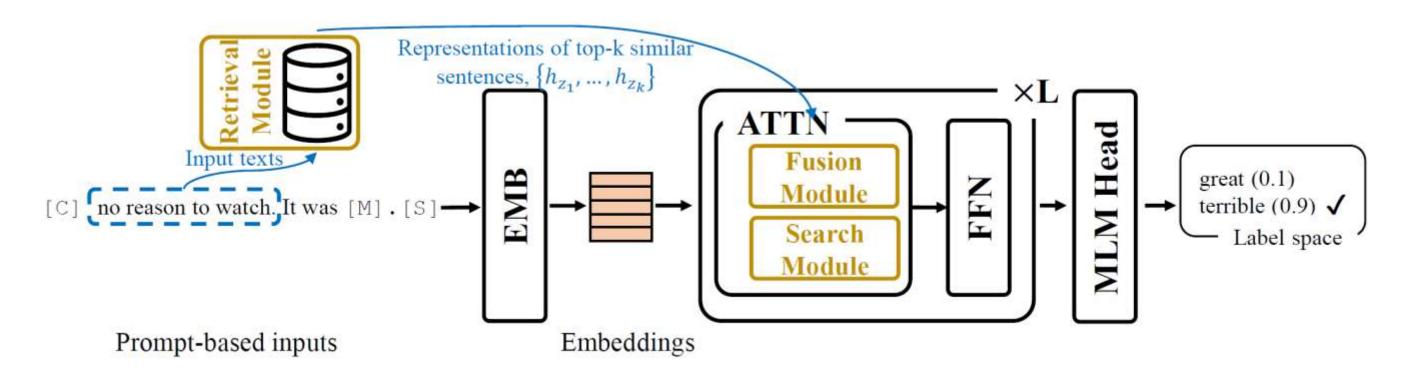
Shangyu Wu, Ying Xiong, Yufei Cui, Xue Liu, Buzhou Tang, Tei-wei Kuo, Chun Jason Xue City University of Hong Kong, Harbin Institute of Technology, Shenzhen, MILA, McGill University National Taiwan University, Mohamed bin Zayed University of Artificial Intelligence



Background


Retrieval-based augmentations in non-knowledge-intensive tasks, such as text classification, are still challenging.

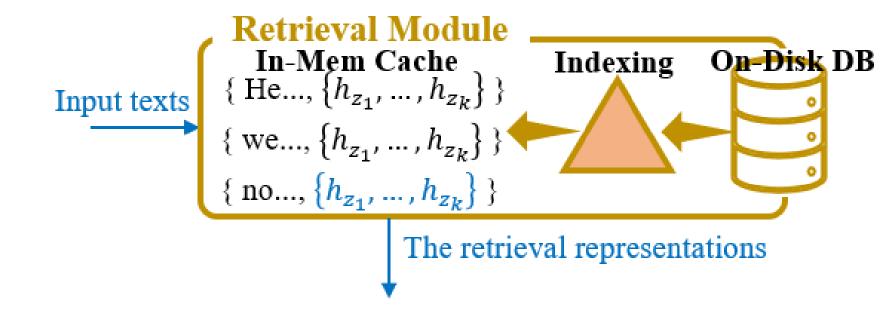

Existing works achieved the SOTA performance on NKI tasks by concatenating retrievals.


Limitations:

- 1. Limited retrievals can be added due to the max sequence length of models.
- 2. Concatenating more retrievals results in a longer input sequence, thus leading to large computations during the attention mechanism.

Intuition: Directly fusing retrieval representations into transformer-based models in a computation-efficient way.

Ranked by ordered mask


The Retrieval Fusion Module

- Reranking the Retrievals
- Learnable Reranker: $R = \{r_1, ..., r_k\}$

Methodology

- Ordered Mask over Retrieval Representations
 - Ordered Mask on dim-d: $V^d = \{v_1^d, \dots, v_k^d\}$
 - $c^d \sim \text{Gumbel}(\beta, \tau)$
 - $v_i^d = 1 \mathbf{cumsum}(c^d)$
- $h_{y_{[\text{cls}]}} = h_{x_{[\text{cls}]}} + \frac{1}{k} \sum v_i^d \cdot h_{z_i}^d$

The Online Retrieval Module

- Query encoder (e.g., BERT).
- Task-agnostic retriever
- Indexing (e.g., FAISS).
- Compressed key-value database.

The Architecture Search Module

- Search Space
 - No Fusion.
 - Fusion with Reranker.
 - Fusion with Ordered Mask.
- Searching Details
- Architectural weights: $\alpha = \{\alpha_1, ..., \alpha_l\}$
- Forward a search module

$$\hat{o}(h) = \sum_{i} \frac{\exp(\alpha_i)}{\sum_{j} \exp(\alpha_j)} o_i(h)$$

Related Work

6/ReFusion

- 1. Few-shot learning: LM-BFF, DART
- 2. Retrieval-augmentation: RETRO, Atlas, RAG
- Source code https://github.com/luffy0

Experimental Setting

- 15 NKI tasks,
 - 8 taks from GLUE;
 - SNLI, SST-5, MR, CR, MNLI, MNLI-mm, Subj, and TREC.

Ranked by L2-norm

- 16-shot learning.
- Seeds: 13, 21, 42, 87, 100.
- Backbone model: RoBERTa-large.

Experimental Results

Main Results										
Methods	SST-2	SST-5	MR	CR	MPQA	SUBJ	TREC	CoLA	Avg-S	
LM-BFF	92.70.9	47.42.5	87.01.2	90.31.0	84.72.2	91.21.1	84.8 _{5.1}	9.37.3	73.4	
DART	93.50.5	-	88.21.0	91.80.5	-	90.71.4	87.13.8	-	-	
KPT	90.31.6		86.81.8	88.83.7	-	-	-	-	-	
CA-512	91.31.4	46.71.1	85.11.4	88.31.7	$76.9_{2.8}$	$88.0_{1.9}$	82.24.4	$7.4_{3.3}$	70.7	
ReFusion	$93.4_{0.6}$	49.81.4	$87.9_{1.1}$	$91.7_{0.3}$	86.71.1	$92.5_{0.8}$	90.33.7	11.44.1	75.5	
Methods	MNLI	MNLI-m	SNLI	QNLI	RTE	MRPC	QQP	Avg-P	Avg-all	
LM-BFF	68.32.3	70.51.9	77.23.7	64.54.2	69.13.6	74.55,3	65.55.3	69.9	71.8	
DART	$67.5_{2.6}$	= 0	$75.8_{1.6}$	66.73.7	=	78.34.5	$67.8_{3.2}$	-	-	
KPT	$61.4_{2.1}$	-	-	$61.5_{2.8}$	-	_	71.62.7	-	-	
CA-512	$66.2_{1.0}$	67.81.3	$71.6_{2.2}$	66.93.2	$66.6_{3.1}$	73.56.9	$64.0_{1.9}$	68.1	69.5	
ReFusion	69.31.5	$70.9_{1.5}$	80.61.4	$73.0_{1.1}$	$70.9_{2.3}$	$77.0_{3.6}$	$68.9_{3.3}$	72.9	74.3	

Search to select the

ranking scheme

The results of LM-BFF, DART refer to their original paper. The results of KPT refer to Chen et al. (2022). The numbers are the average results. The subscript numbers are the standard deviation results.

Ablation Study

Methods	MPQA	SUBJ	TREC	SNLI	QNLI	RTE
Roberta-Large	83.62.5	90.32.8	83.85.2	73.55.2	65.03.0	64.12.0
Reranker	$84.2_{2.2}$	$91.3_{1.3}$	$85.0_{4.2}$	74.34.6	$68.8_{1.4}$	65.63.1
Ordered Mask	83.31.9	90.81.4	$83.0_{5.8}$	$74.9_{4.0}$	68.31.4	65.83.1
NAS with Reranker	86.913	92.41.3	90.82.5	80.31.9	$73.5_{1.8}$	69.224
NAS with Ordered Mask	$87.0_{1.5}$	92.40.7	90.73.0	80.31.3	$73.0_{1.0}$	70.42.5
ReFusion	86.71.1	$92.5_{0.8}$	90.33.7	80.61.4	$73.0_{1.1}$	$70.9_{2.3}$

Full Training Set

Methods	SST-2	SST-5	MR	CR	MPQA	SUBJ	TREC	CoLA	RTE
LM-BFF	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6	80.9
ReFusion	95.6	61.0	92.3	91.4	84.4	97.1	97.6	62.8	85.2