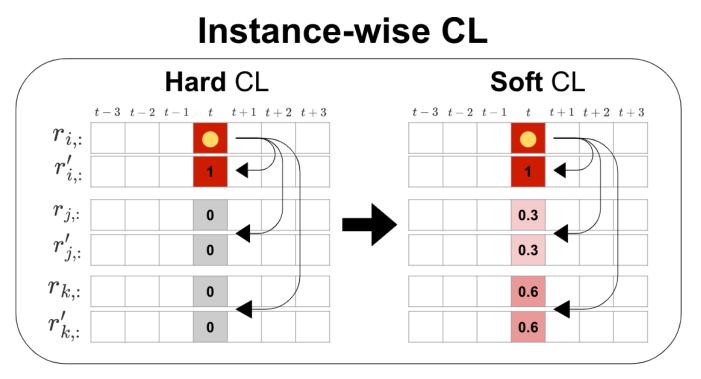
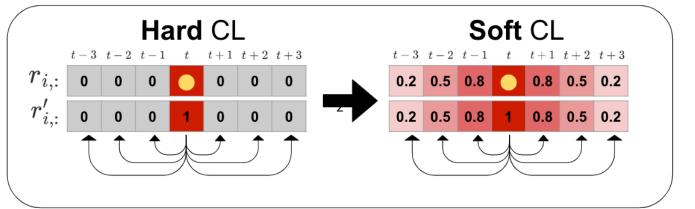
Soft Contrastive Learning for Time Series

Seunghan Lee¹, Tayeoung Park^{1,2}, Kibok Lee^{1,2}

¹Department of Statistics and Data Science, Yonsei University, ²Department of Applied Statistics, Yonsei University


1. Contrastive Learning in Time Series

Contrastive Learning (CL): maximize similarities between positive pairs while minimizing similarities between negative pairs


- **Instance-wise CL**: contrasts the representations of TS instances
- **Temporal CL:** contrasts the representations of timestamps within a single TS
- Soft CL: assigns soft labels (between 0 and 1) to pairs

	T-Loss (NeurIPS 2019)	Self-Time (arxiv 2020)	TNC (ICLR 2021)	TS-SD (IJCNN 2021)	TS-TCC (IJCAI 2021)	TS2Vec (AAAI 2022)	Mixing-Up (PR Letters 2022)	CoST (ICLR 2022)	TimeCLR (KBS 2022)	TF-C (NeurIPS 2022)	CA-TCC (TPAMI 2023)	SoftCLT (Ours)
Instanse-wise CL	1	✓		1	1	1	✓	✓	1	1	1	1
Temporal CL		✓	1		1	1					1	1
Hierarchical CL						1						1
Soft CL												✓

2. Soft Contrastive Learning for Time Series (SoftCLT)

Temporal CL

Instance-wise CL : contrast multiple **TS** at a single timestamp **Temporal CL**

- Two views of the same sample are denoted as γ and $\dot{\gamma}$, respectively.
- Assign soft labels using sigmoid function: $\sigma(a) = 1/(1 + \exp(-a))$

(1) Soft Instance-wise CL

- Soft labels : $w_I(i, i') = 2\alpha \cdot \sigma \left(-\tau_I \cdot D(x_i, x_{i'})\right)$
- **Distance:** min-max normalized distance metric $D(\cdot, \cdot)$ between two TS in data space (i.e. Euclidean distance, Cosine similarity, DTW)
- Soft instance-wise contrastive loss:
- For conciseness, let $r_{i,t} = r_{i+2N,t}$ and $r_{i,t} = r_{i+N,t}$
- Softmax probability of the relative similarity out of all similarities; for a pair of TS indices (i, j)

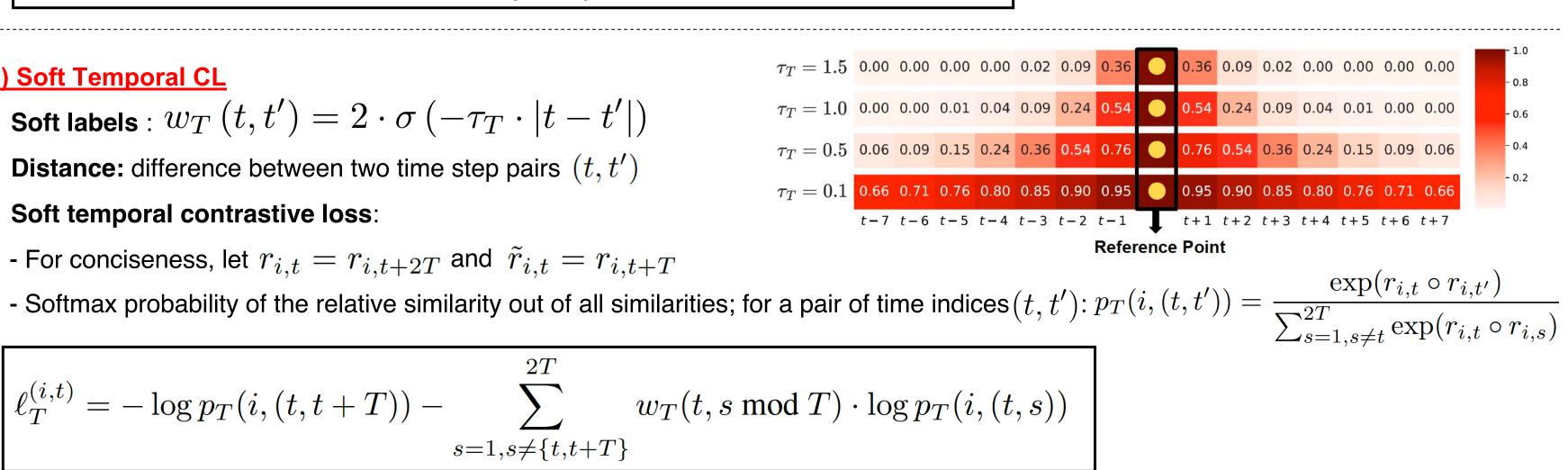
$$b_{I}^{(i,t)} = -\log p_{I}((i,i+N),t) - \sum_{j=1,j\neq\{i,i+N\}}^{2N} w_{I}(i,j \mod N) \cdot \log p_{I}((i,j),t)$$

(2) Soft Temporal CL

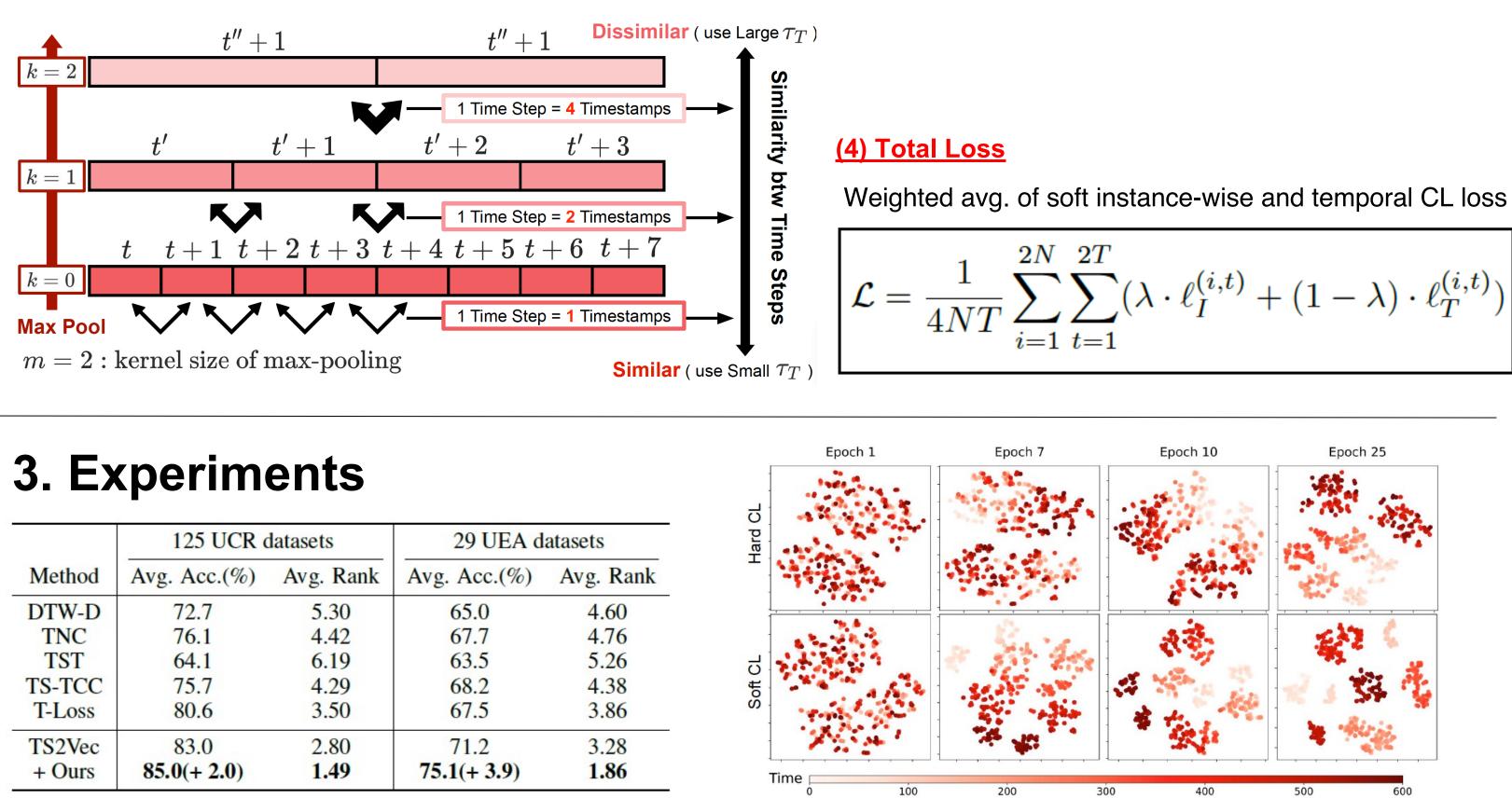
- Soft labels : $w_T(t, t') = 2 \cdot \sigma \left(-\tau_T \cdot |t t'| \right)$
- **Distance:** difference between two time step pairs (t, t')
- Soft temporal contrastive loss:

 $\ell_T^{(i,t)} = -\log p_T(i, (t, t+T)) -$

- For conciseness, let $r_{i,t} = r_{i,t+2T}$ and $\tilde{r}_{i,t} = r_{i,t+T}$


 $s=1,s\neq\{t,t+T\}$

Reference Positive Soft Assignment • Negative


: contrast multiple timestamps within a single TS

i'):
$$p_I((i, i'), t) = \frac{\exp(r_{i,t} \circ r_{i',t})}{\sum_{j=1, j \neq i}^{2N} \exp(r_{i,t} \circ r_{j,t})}$$

(3) Hierarchical Soft Temporal CL

- Adopt the hierarchical contrastive loss proposed in TS2Vec (Yue et al., 2022)

	125 UCR o	latasets	29 UEA d
Method	Avg. Acc.(%)	Avg. Rank	Avg. Acc.(%)
DTW-D	72.7	5.30	65.0
TNC	76.1	4.42	67.7
TST	64.1	6.19	63.5
TS-TCC	75.7	4.29	68.2
T-Loss	80.6	3.50	67.5
TS2Vec	83.0	2.80	71.2
+ Ours	85.0(+ 2.0)	1.49	75.1(+ 3.9)

(1) Classification Task

- 125 UCR datasets: 125 univariate TS
- 29 UEA datasets: 29 multivariate TS

(3) Ablation Studies

Soft assign	nment	UCR datasets	UEA datasets		Tem	poral CL	-		t-3	t-2	t-1	t	t+1	t+2	t+3	
Instance-wise	Temporal	Avg. Acc.(%)	Avg. Acc.(%)	M	ethod	Avg. Acc.(%)	Neighborhood	0	0	1	1		1	1	0	0
1	_	82.3 83.9 (+1.6)	70.5 73.0 (+2.5)		ighbor inear	76.1 77.2	- Linear						0.8			
✓	<i>s</i>	83.7 (+1.4) 85.0 (+2.7)	73.8 (+3.3) 74.2 (+3.7)		ussian gmoid	83.5 83.7	Gaussian, Sigmoid	0.1	0.2	0.7		Ŧ	0.9 Point	0.7	0.2	0.1

(3**-**a)

- (3-a) Applying soft assignments to instance-wise or temporal CL provides a performance gain, and applying them to both dimensions results in the best performance
- (3-b) Different assignments functions for temporal CL; Sigmoid results in the best performance
- (3-c) Difference choices of the distance metric; COS (cosine similarity), EUC (Euclidean distance), DTW (dynamic time warping), and TAM (time alignment measurement).

References

Yue, Zhihan, et al (2020). "Ts2vec: Towards universal representation of time series." In AAAI 2022

• Losses are computed on intermediate representations after max-pooling along the temporal axis and then aggregated

(2) t-SNE Visualization of Temporal Representations

- Representations learned with hard & soft CL over training epochs
- Hard CL finds coarse-grained neighborhood relationships, while soft CL finds more fine-grained relationships

(3-b)

Inst. CL	Temporal CL					
Metric	Hard	Soft				
COS	83.7	84.7				
EUC	83.9	84.8				
DTW	83.9	85.0				
TAM	83.9	85.0				