Abstract

The DONUT-hole model enhances the foundational DONUT's OCR and VSU capabilities within a transformer framework, significantly improving deployability with a 54% reduction in model density via knowledge distillation and pruning. It retains robust performance and closely mirrors DONUT's internal representations, indicated by a CKA score of 0.79, affirming its proficiency in extracting key document information, crucial for logistics operations.

Proposed DONUT Model Configurations

DONUT-base-11M: is employed as the **teacher network** in the distillation and pruning experiments and has the same pretrained weights and architecture as the original DONUT model.

DONUT-base-0.5M: is a scaled down version of the original DONUT model pre trained on 500k SynthDog-En images. Due to the unavailability of ground truth data DONUT was originally trained on.

DONUT-small: a lighter version of DONUT made by replacing Swin-B encoder with Swin-T encoder and replacing 4 layer MBART decoder with 2 layer BART encoder. Additionally an adaptor layer (a small neural network) is used to align text and visual token dimensions for effective cross-modal fusion.

DONUT-small-distilled: Knowledge distillation is employed with DONUT-small as the student and DONUT-base as the teacher to produce this model.

DONUT-base-pruned: Magnitude pruning is employed on the teacher DONUT-base-11M model. Model is pruned to ~50% spasticity to produce this model.

DONUT-hole: The prune-then-distill paradigm produces this model by distilling knowledge from the DONUT-base model to the DONUT-base-pruned model.

donut-

donut-

{a.shaikh@student.,m.cochez@}vu.nl, {d.diachkov,m.d.rijcke,s.yousefi}@primevision.com

Metrics

Right: Prune-then-Distill

Left: Knowledge Distillation

Tree Edit Distance (TED) Accuracy: Measures the similarity between the predicted and the actual structure of the document trees. Higher is better.

Field F1 Accuracy: Assesses precision and recall in field-level predictions, crucial for information extraction accuracy.

Centered Kernel Alignment(CKA) is a method used to compare representations based on comparing representational similarity matrices.

$X \in \mathbb{R}^{m imes d1}$	$Y \in \mathbb{R}^{m imes d2}$	$\operatorname{HSIC}_{0}(K,L) = \frac{\operatorname{vec}(K_{0}) \cdot \operatorname{vec}(L_{0})}{(m-1)^{2}}$
$K = XX^T$	$L = YY^T$	$HSIC_{2}(K, I)$
$K_0 = HKH$	$L_0=HLH$	$CKA(K, L) = \frac{HSIC_0(K, L)}{\sqrt{HSIC_0(K, K) \cdot HSIC_0(L, L)}}$

Results

Model	#Non-embedding Params TEI	O Accuracy F	1 Accuracy
donut-base-0.5M	140M	0.76	0.61
donut-small	37M	0.55	0.37
donut-small(with distillation)	37M	0.61	0.41
donut-base-pruned	37M	0.0	0.0
nut-base-pruned(with distillation)	37M	0.85	0.75

Results of the downstream KIE task on the cord-v2 dataset

Model	#Non-embedding Params	TED Accuracy	F1 Accuracy
donut-base-0.5M	140M	0.65	0.50
donut-small	37M	0.44	0.26
nut-small(with distillation)	37M	0.50	0.35
donut-base-pruned	37M	0.24	0.048
-base-pruned(with distillation)	37M	0.73	0.57

Results of the downstream KIE task on the parcel reader dataset

L	ayerwi	se CKA	plot co	mparin
Layers donut-base-11M	dec.3 -	0.06	0.06	0.02
	dec.2 -	-0.01	0.00	-0.02
	dec.1 -	-0.01	-0.00	-0.02
	dec.0 -	-0.01	0.00	-0.02
	enc.3 -	0.47	0.46	0.32
	enc.2 -	0.45	0.43	0.30
	enc.1 -	0.72	0.71	0.50
	enc.0 -	0.79	0.78	0.52
		enc.0	enc.1 La	enc.2 ayers (

Conclusions • Prune-then-distill is a simple yet effective paradigm reducing the DONUT model's size by 54% while retaining its performance efficacy. • Distillation shows promising results in boosting model performance and bringing model representation closer to the teacher.

Scatter plot of N-TED values of the proposed DONUT model configurations vs DONUT-base-0.5M on the SynthDog-EN test set on the upstream reading task

(a) DONUT-pruned

(b) DONUT-hole

Visualizing Layerwise CKA Representational Similarity Index Heatmaps comparing representations of the trained models and DONUT-base-11M