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What we have done?

GKP-variants with dynamic operations

‣ Under the general realm of CNN network pruning, two 
categories of techniques have been proposed: unstructured 
pruning and structured pruning.


‣ Unstructured pruning:

‣ Enjoy a higher degree of pruning freedom and thus better 

performance.

‣ Result in a sparse network structure.

‣ Require special libraries or hardware support to realize 

compression or acceleration benefits.

‣  Structured pruning:


‣ Removes model components in groups that follow the 
architecture design.


‣ Reduced in dimension yet entirely dense.

‣ Provide immediate compression benefits without additional 

demand

Background

‣ TMI-GKP opts to include dynamic choices of clustering schemes in 
each of its convolutional layers.


‣ Some clustering schemes involving dimensionality reduction can be 
very expensive to run (e.g., k-PCA).


‣ Requires training snapshots or checkpoints of the unpruned model, 
which is not user friendly in practical applications.

‣ We propose a new method to include the dynamic operation within 
Conv2d(groups) (a.k.a. “group count”), and argue that allowing each 
convolutional layer to take a flexible number of groups when grouping 
filters is the best area to integrate dynamic operations into a GKP 
procedure.


‣ Our proposed method, LeanFlex-GKP, consists of a four-stage procedure:

‣ Filter grouping: 

• group filters within a certain layer into n equal-sized filter groups 
according to their distance towards k-Means++ determined centers.


‣ Group kernel pruning 
• prune a certain amount of grouped kernels out of all filter groups 

within the same layer, determined by each grouped kernel’s L2 norm 
and distance to their geometric median.


‣ Post-prune group count evaluation 
• evaluate all grouping and pruning strategies obtained under different 

group count settings and select the one where the preserved group 
kernels have the maximum inter-group distance and the minimum 
intra-group distance.


‣ Grouped convolution reconstruction 
• convert the pruned model to a grouped convolution format.

‣ Advance the progress of GKP by identifying and solving a common pain 
points — dynamic operation.


‣ Provide an efficient, hassle-free experience by proposing a method that 
is post-train, one-shot, data-agnostic, and with just one tunable hyper-
parameter.

‣ One can also measure the compute/memory requirement of a pruned 

model before the actual pruning, as well as be able to prune with 
different aggressiveness — two user-friendly characteristics 
(surprisingly) lacking in many modern pruning methods.


‣ Massive speed advantage on pruning procedure over existing performant 
GKP variants.


‣ Achieve SOTA-competitive and even beyond SOTA performance on wide 
range of CNN model architecture and dataset.


‣ Guiding future developments of GKP with our design insights and 
ablation studies.

Contributions

How we did it?
#1: KPP-Induced Filter Grouping

#3: Post-Prune Group Count Evaluation

‣ We first cluster filters (the circles) via KPP into n groups with no constraint on 
having an equal group size to determine clustering centers (the squares), as in 
(a). 


‣ Then, our operation can be viewed as a cycle between assigning m nearest 
filters into a KPP center to form a filter group, then finding the next KPP center 
to do subsequent filter assignments, as in (b) → (c); until n filter groups are 
formed (the first KPP center is picked at random). 


‣ Last, we conduct a multiple restart and repeat (b) and (c) center-finding-filter-
assignments, as showcased in (d).


‣ After all multiple restarts, we are left with n candidate filter grouping strategies, 
and select the strategy that has filters with the least intra-group distance to their 
respective KPP centers (having less summed length on red arrows).

‣ Previous methods like TMI-GKP converted its grouped kernel selection problem 
as a graph search problem, added with the help of a greedy procedure and 
multiple restarts. 


‣ While such a procedure is generally efficient, it is still time and resource-
consuming given a wide layer.


‣ We utilize a simple combination of L2 norm and Geometric Median based 
distance to form a lightning-fast pruning procedure:

‣ Given an unpruned filter group as in (a), we first calculate the Geometric 

Median (GM) of its Grouped Kernels (GKs), as well as each GK’s distance to 
the GM and their L2 norm. 


‣ These distances and the L2 norm are visualized in (b) as the length of black 
arrows and the area of green circles, respectively. 


‣ The GKs with large L2 norms and small distances to their GMs are 
preserved and eventually reconstructed to the grouped convolution format, 
as shown (c) to (d).

Main Experiments (abbreviated)

TL;DR: Pruning grouped kernels while remaining structured is great, but all performant grouped kernel pruning methods rely on dynamic operations with severe costs.  
We argue it is best to include such dynamic operations at Conv2d(groups), resulting in a method with improved performance, efficiency, and user-friendliness.

#2: GM + L2 Grouped Kernel Pruning
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‣ To achieve better pruning freedom while remain densely 
structured, a special type of intra-channel pruning granularity 
called Grouped Kernel Pruning (GKP) has been proposed in 
ICLR 2022.
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(a) Generate Dynamic Equal-Size Filter Grouping
Candidates and Select the TMI Preferred One

(b) Prune Equal Amount of
Grouped Kernels within Each Group

(c) Reconstruct as
Grouped Convolution
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(a) Learning-based Filter Grouping
with Dynamic Group Sizes

(b) Magnitude-based Grouped Kernel
Pruning with Dynamic Pruning Ratios

(c) Reconstruct with
Custom Model Definition

‣ DSP makes its filter grouping and group kernel pruning stages dynamic in 
the sense that they may enjoy different group sizes and different in-group 
pruning rates within the same layer.


‣ But resultant pruned network is irregularly shaped and therefore relies on 
custom model definitions and convolutional operators for fine-tuning and 
inference.
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‣ We first compute the GM among retained grouped kernels and then 
calculate the inner and outer distance among them. 


‣ After a normalization w.r.t. the group count, the one with the highest 
average (Outer Distance - Inner Distance) is chosen.


‣ Given each group count evaluation is conducted upon a pruned conv 
layer (after being grouped with different Conv2d(groups)), our method 
makes connections between the (originally independent) filter grouping 
and grouped kernel pruning stage.


