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Applying Straight-Through to 
expert routing necessitates 
the output of all experts
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Policy Gradient

does not work well
(Kooletal.,2021)



Backpropagation Made Sparse
We propose SparseMixer to provide sound gradient estimations for expert 
routing, without requiring outputs from all experts
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We propose SparseMixer to provide sound gradient estimations for expert 
routing, without requiring outputs from all experts

9

selected experts only 

first-order information
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Underlying Mechanism of Switch Transformer
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Underlying Mechanism of Switch Transformer

> Expert Sampling during Training
Softmax Switch Transformer

D ∼ softmax(𝜃𝜃)
D = argmax𝐼𝐼𝑖𝑖  𝜃𝜃𝐼𝐼𝑖𝑖 ⋅ 𝑢𝑢𝐼𝐼𝑖𝑖, where 
𝑢𝑢𝐼𝐼𝑖𝑖 ∼ Uniform(1 − 𝑟𝑟, 1 + 𝑟𝑟)iid

D ∼ argmax𝐼𝐼𝑖𝑖  𝜃𝜃𝐼𝐼𝑖𝑖 + 𝐺𝐺𝐼𝐼𝑖𝑖, 
where 𝐺𝐺𝐼𝐼𝑖𝑖 ∼ Gumbel(0,1)iid
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Mark 𝜃𝜃∗ ≔ max
𝐼𝐼𝑖𝑖

 𝜃𝜃𝐼𝐼𝑖𝑖, then 𝐼𝐼𝑖𝑖  will never be sampled if 

𝜃𝜃∗ − 𝜃𝜃𝐼𝐼𝑖𝑖 > 𝑟𝑟 ⋅ ( 𝜃𝜃∗ + 𝜃𝜃𝐼𝐼𝑖𝑖 ) 

Important Property
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where 𝐺𝐺𝐼𝐼𝑖𝑖 ∼ Gumbel(0,1)iid

Mark 𝜃𝜃∗ ≔ max
𝐼𝐼𝑖𝑖

 𝜃𝜃𝐼𝐼𝑖𝑖, then 𝐼𝐼𝑖𝑖  will never be sampled if 

𝜃𝜃∗ − 𝜃𝜃𝐼𝐼𝑖𝑖 > 𝑟𝑟 ⋅ ( 𝜃𝜃∗ + 𝜃𝜃𝐼𝐼𝑖𝑖 ) 
D ∼

exp 𝜃𝜃𝑖𝑖 ⋅ Δ𝑖𝑖
∑𝑗𝑗 exp 𝜃𝜃𝑗𝑗 ⋅ Δ𝑗𝑗

Δ𝑖𝑖 = 𝛿𝛿(𝜃𝜃∗ − 𝜃𝜃𝐼𝐼𝑖𝑖 > 𝑟𝑟 ⋅ 𝜃𝜃∗ + 𝜃𝜃𝐼𝐼𝑖𝑖 )

Masked-Softmax
Important Property

Adapt
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Underlying Mechanism of Switch Transformer

> Expert Sampling during Training  prefers a “margin-like” distribution

> Expert Output Scaling 

In Switch Transformer      GD ← 𝜋𝜋D ⋅ gD x

Why we need 𝜋𝜋D? GD ← 𝜋𝜋D ⋅ gD x  or GD ← gD x ?

With the masked-softmax parameterization, 
𝜋𝜋D scaling leads to a dynamic learning rate 
adaptation on expert model learning. 
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Underlying Mechanism of Switch Transformer

> Expert Sampling during Training  prefers a “margin-like” distribution

> Expert Output Scaling  acts as a dynamic learning rate adapter

Applying SparseMixer on Switch Transformer Training

SparseMixer-Mechanism



Neural Machine Translation
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Electra Pretraining
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Pretraining
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Take Aways

25MSR is Hiring! FTE & Intern headcounts available! Feel free to reach out : ) 

SparseMixer provides sound gradient estimations 
for expert routing, without requiring outputs from 
all experts

Our study sheds insights into the mechanism of 
switch transformer
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