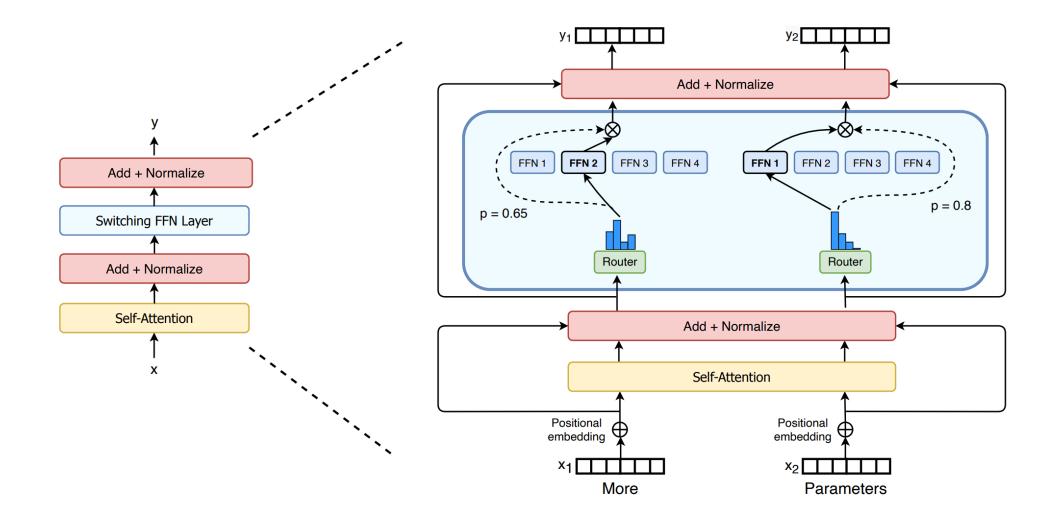
Sparse Backpropagation for MoE Training

Liyuan Liu[§], Jianfeng Gao[§], Weizhu Chen[‡]

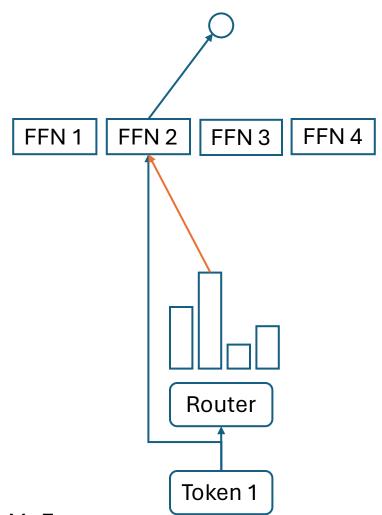
[§]Microsoft Research [‡]Microsoft Azure AI

Mixture-of-Expert

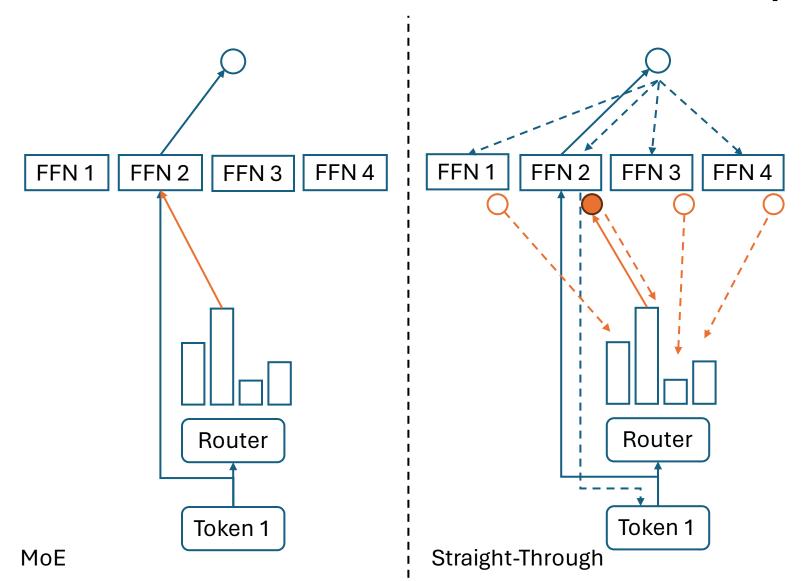


2

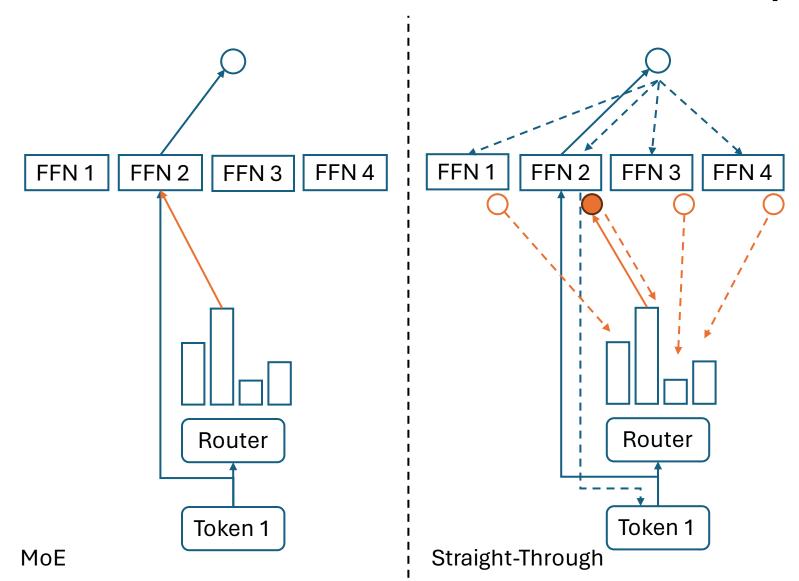
Gradient Estimation for Expert Routing



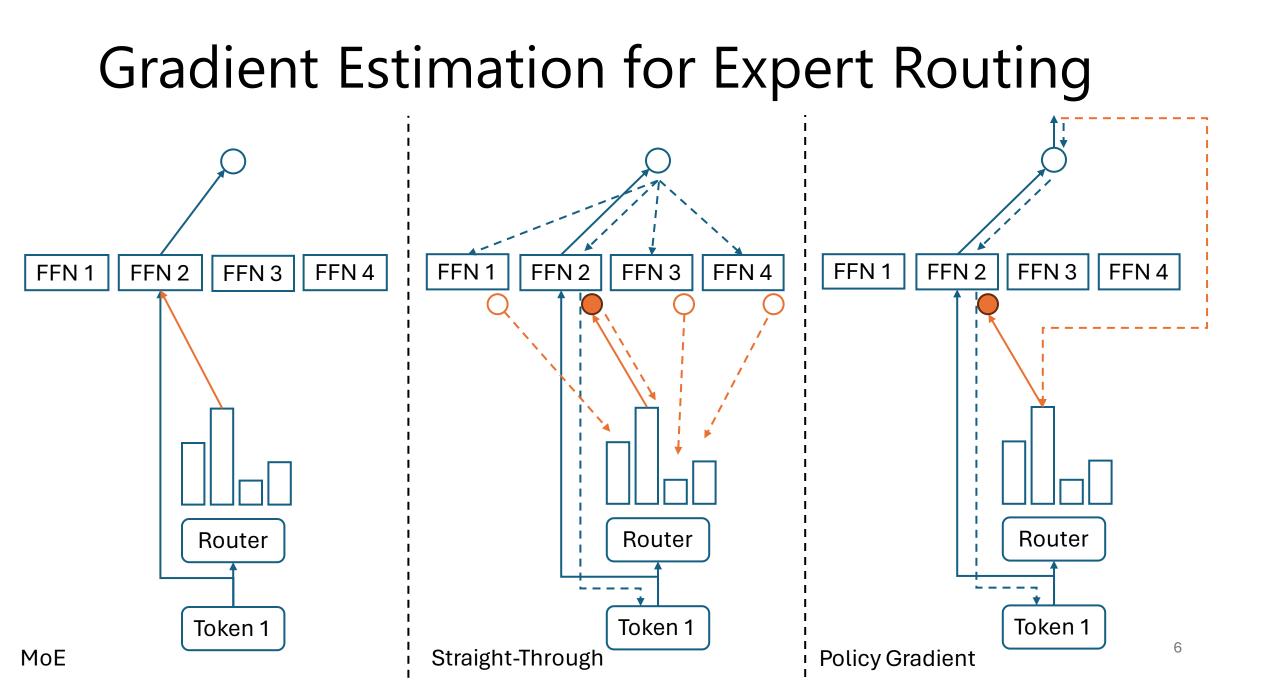
Gradient Estimation for Expert Routing

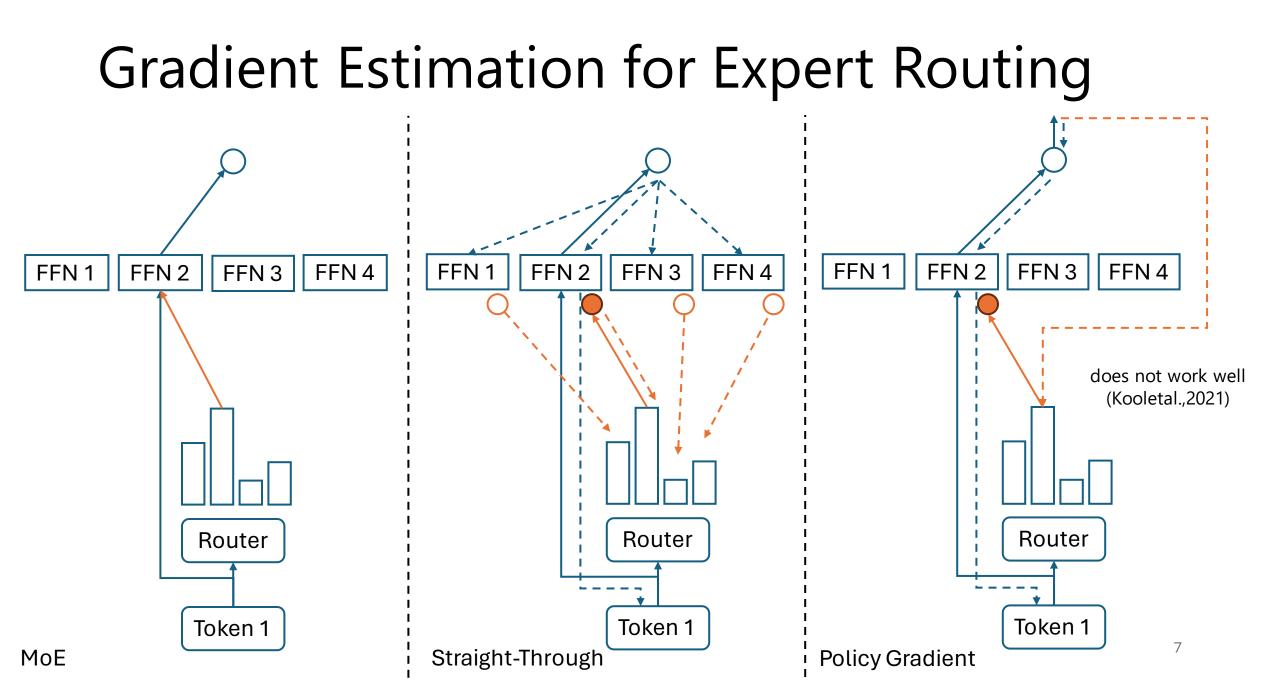


Gradient Estimation for Expert Routing



Applying Straight-Through to expert routing necessitates the output of all experts



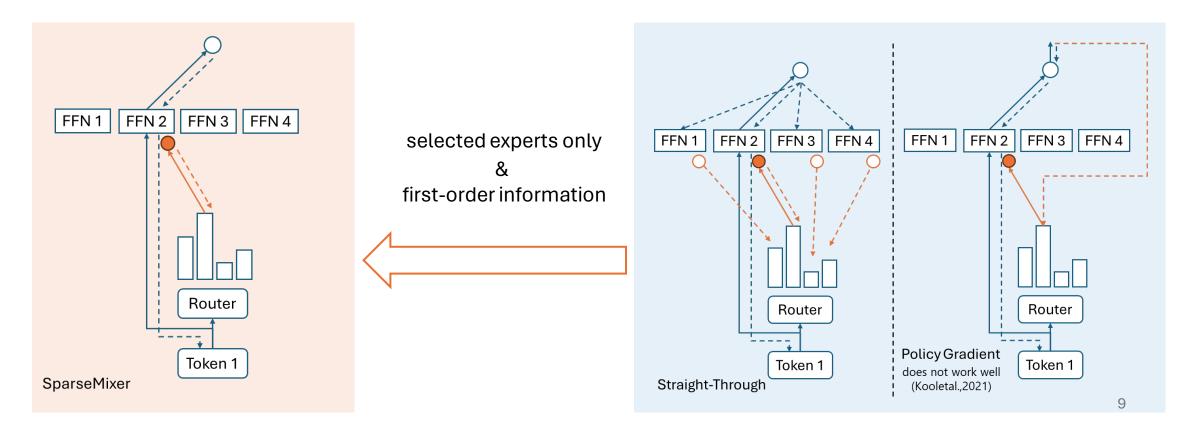


Backpropagation Made Sparse

We propose SparseMixer to provide sound gradient estimations for expert routing, without requiring outputs from all experts

Backpropagation Made Sparse

We propose SparseMixer to provide sound gradient estimations for expert routing, without requiring outputs from all experts



> Expert Sampling during Training

> Expert Sampling during Training Softmax

 $D \sim \operatorname{softmax}(\theta)$

D ~ argmax_{I_i}
$$\theta_{I_i} + G_{I_i}$$
,
where $G_{I_i} \stackrel{\text{iid}}{\sim} \text{Gumbel}(0,1)$

Switch Transformer

D = $\operatorname{argmax}_{I_i} \theta_{I_i} \cdot u_{I_i}$, where $u_{I_i} \approx \operatorname{Uniform}(1 - r, 1 + r)$

> Expert Sampling during Training Softmax

 $D \sim \operatorname{softmax}(\theta)$

$$D \sim \operatorname{argmax}_{I_i} \theta_{I_i} + G_{I_i},$$

where $G_{I_i} \stackrel{iid}{\sim} \operatorname{Gumbel}(0,1)$

Switch Transformer

D = $\operatorname{argmax}_{I_i} \theta_{I_i} \cdot u_{I_i}$, where $u_{I_i} \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(1 - r, 1 + r)$

Important Property

Mark $\theta^* \coloneqq \max_{I_i} \theta_{I_i}$, then I_i will <u>never be</u> sampled if $\theta^* - \theta_{I_i} > r \cdot (|\theta^*| + |\theta_{I_i}|)$

> Expert Sampling during Training Softmax

 $D \sim \operatorname{softmax}(\theta)$

D ~ argmax_{*I_i*}
$$\theta_{I_i} + G_{I_i}$$
,
where $G_{I_i} \stackrel{\text{iid}}{\sim} \text{Gumbel}(0,1)$

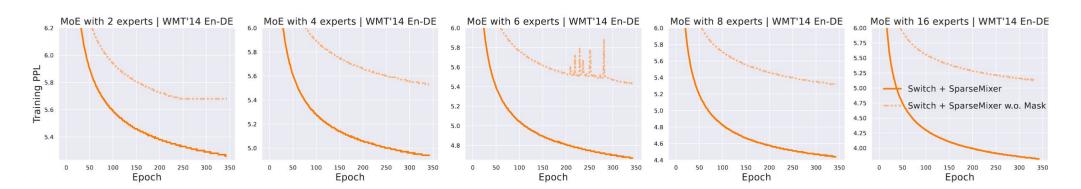
Switch Transformer

D = $\operatorname{argmax}_{I_i} \theta_{I_i} \cdot u_{I_i}$, where $u_{I_i} \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(1 - r, 1 + r)$

Important Property

Masked-Softmax

$$D \sim \frac{\exp(\theta_i) \cdot \Delta_i}{\sum_j \exp(\theta_j) \cdot \Delta_j} \quad \Delta_i = \delta(\theta^* - \theta_{I_i} > r \cdot (|\theta^*| + |\theta_{I_i}|)) \quad Adapt \quad Mark \ \theta^* \coloneqq \max_{I_i} \theta_{I_i}, \text{ then } I_i \text{ will } \underline{\text{never be sampled if}} \quad \theta^* - \theta_{I_i} > r \cdot (|\theta^*| + |\theta_{I_i}|)$$



> Expert Sampling during Training → prefers a "margin-like" distribution

- > Expert Sampling during Training → prefers a "margin-like" distribution
- > Expert Output Scaling
 - In Switch Transformer $G_D \leftarrow \pi_D \cdot g_D(x)$

- > Expert Sampling during Training → prefers a "margin-like" distribution
- > Expert Output Scaling
 - In Switch Transformer $G_D \leftarrow \pi_D \cdot g_D(x)$

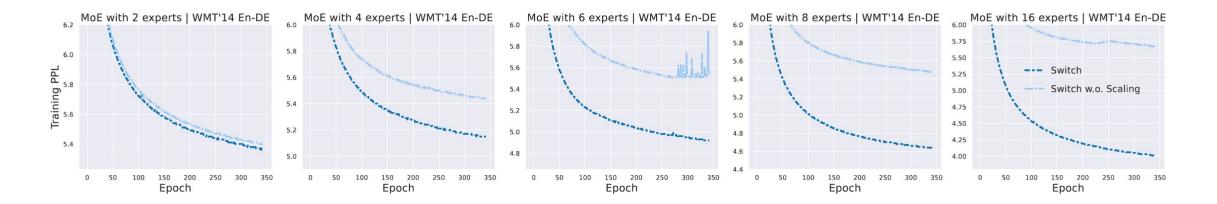
Why we need π_D ? $G_D \leftarrow \pi_D \cdot g_D(x)$ or $G_D \leftarrow g_D(x)$?

- > Expert Sampling during Training \rightarrow prefers a "margin-like" distribution
- > Expert Output Scaling

In Switch Transformer $G_D \leftarrow \pi_D \cdot g_D(x)$

Why we need π_D ? $G_D \leftarrow \pi_D \cdot g_D(x)$ or $G_D \leftarrow g_D(x)$?

With the masked-softmax parameterization, $\pi_{\rm D}$ scaling leads to a dynamic learning rate adaptation on expert model learning.

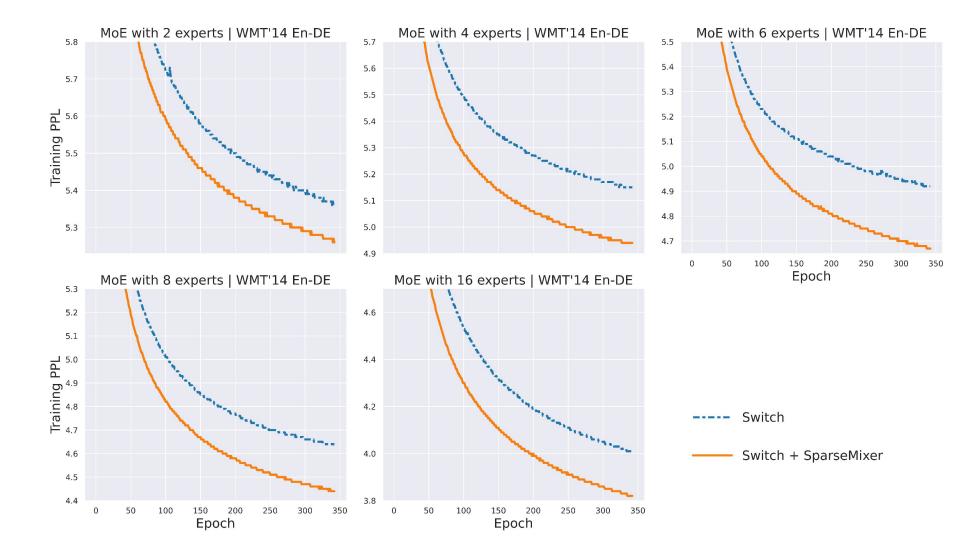


- > Expert Sampling during Training → prefers a "margin-like" distribution
- > Expert Output Scaling \rightarrow acts as a dynamic learning rate adapter

- > Expert Sampling during Training → prefers a "margin-like" distribution
- > Expert Output Scaling \rightarrow acts as a dynamic learning rate adapter

Applying SparseMixer on Switch Transformer Training

Neural Machine Translation



Neural Machine Translation

Table 1: BLEU score on WMT'14 En-De (N refers to the number of experts).

	Danca	Mixture-of-Expert						
	Dense	N=2	N = 4	N = 6	N = 8	N = 16		
Transformer-base	28.33	/	/	/	/	/		
Switch	/	28.17	28.05	27.96	27.99	27.81		
Switch+SparseMixer	/	28.72	28.61	28.32	28.12	28.08		

Electra Pretraining

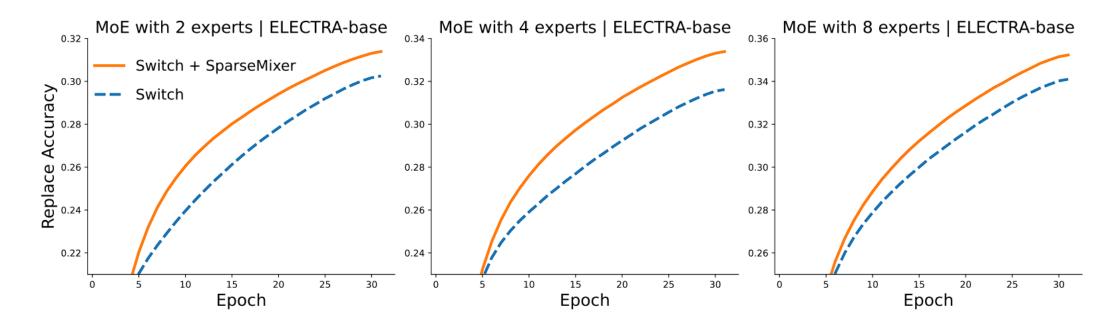


Figure 2: Training curves of Switch Transformer on ELECTRA-base training.

Pretraining

Table 2: Results on the GLUE development set. S refers to Switch and S+S refers to Switch+SparseMixer. AVG is the average score across eight tasks.

N	Model	AVG	MNLI-(m/mm) (Acc.)	QQP (Acc.)	QNLI (Acc.)	SST-2 (Acc.)	CoLA (Mat. Corr.)	RTE (Acc.)	MRPC (Acc.)	STS-B (Spear. Corr.)
1	Dense	87.37	88.72/88.40	91.90	93.36	93.35	68.71	82.31	89.95	90.83
2	S	87.62	88.55/88.34	91.86	93.52	94.27	67.90	83.76	90.69	90.52
	S+S	88.31	89.06/88.78	91.98	93.54	94.38	69.96	85.20	91.67	90.81
4	S	87.02	88.12/88.40	91.73	93.21	93.92	70.89	77.26	90.44	90.49
	S+S	87.63	88.97/88.41	91.92	93.54	94.04	71.00	80.87	90.69	90.72
8	S	87.27	88.43/88.22	91.78	93.23	94.84	68.06	80.87	90.44	90.62
	S+S	87.71	88.69/88.47	92.03	93.41	94.15	69.00	83.76	89.95	90.81

Take Aways

SparseMixer provides sound gradient estimations for expert routing, without requiring outputs from all experts

Our study sheds insights into the mechanism of switch transformer