A Quadratic Synchronization Rule for Distributed Deep Learning

Xinran Gu^{*,1} Kaifeng Lyu^{*,2} Sanjeev Arora² Jingzhao Zhang¹ Longbo Huang¹ ¹Tsinghua University ²Princeton University

Abstract

Local gradient methods, e.g., Local SGD, improve the communication efficiency of data parallel training by letting workers communicate only every *H* steps.

- How to set the synchronization period H?
- Optimization: communication & convergence tradeoff
- Generalization: proper $H \Rightarrow$ higher test acc.(Lin et al., 2020)
- We propose a theory-grounded strategy to set *H*

Quadratic Synchronization Rule (QSR)

 $H \sim \eta^{-2}$ (η : learning rate) Improve comm. efficiency & test acc. simultaneously!

Theory: Why does Local SGD Generalize Better?

	time	val. acc.
data parallel	26.7h	79.86% 🔶
QSR	20.2h	80.98%
	S	ave 7h, improve 1%

Setting: 300 epoch on ViT-B, ImageNet

Background: Local Gradient Methods

- Data parallel approach
- Distribute gradient computation on *B* samples to *K* workers
- Each iteration, each worker:
 - 1. compute gradients on B/K samples
 - 2. average gradients via All-Reduce
 - 3. update using the averaged gradient & optimizer OPT

Issue: frequent sync. \Rightarrow high comm. cost

Local gradient methods

- Each worker locally updates its own replica with OPT
- Average model parameters every *H* steps

- Setting (Follow Blanc et al., 2020; Damian et al., 2021; Li et al., 2022)
- Assume a minimizer manifold $\boldsymbol{\Gamma}$
- Assume a smaller LR η
- Analyze dynamics of (Local) SGD near $\boldsymbol{\Gamma}$
- Fast and slow dynamics in SGD (Blanc et al., 2020; Damian et al., 2021; Li et al., 2022)

Generalization Benefits of Local SGD

- Local steps improve generalization (Lin et al., 2020)
- Run #1: Parallel SGD (\equiv Local SGD with H = 1)
- Run #2: Same as #1 but switch to Local SGD with H > 1 at some epoch t_0 , named "Post-local SGD"

- Result: test acc. #2 > #1

H steps H steps H local steps + average drift fast in expectation, but drift fast in expectation, drift slowly go back and forth (large var.) averaging reduces var. SDE approximations for different scalings of H **Theorem (informal).** For $O(\eta^{-2})$ steps, Local SGD with different scalings of *H* can be approximated by the following SDEs on Γ : 1. $H = \beta / \eta$ (Gu et al., 2023) $\mathrm{d}\boldsymbol{\zeta}(t) = P_{\boldsymbol{\zeta}} \Big(\frac{1}{\sqrt{B}} \boldsymbol{\Sigma}_{\parallel}^{1/2}(\boldsymbol{\zeta}) \mathrm{d}\boldsymbol{W}_{t} - \frac{1}{2B} \nabla^{3} \mathcal{L}(\boldsymbol{\zeta}) [\widehat{\boldsymbol{\Sigma}}_{\Diamond}(\boldsymbol{\zeta})] \mathrm{d}t - \frac{K-1}{2B} \nabla^{3} \mathcal{L}(\boldsymbol{\zeta}) [\widehat{\boldsymbol{\Psi}}(\boldsymbol{\zeta})] \mathrm{d}t \Big)$ Same as SGD (Li et al., 2022) Unique drift term of Local SGD - $\widehat{\Psi}(\zeta)$ increases with H, goes to 0 as $H\eta \to 0$ and goes to $\widehat{\Sigma}_{\diamond}(\zeta)$ as $H\eta \to \infty$ 2. $H = (\alpha/\eta)^2$ (our new result) $d\boldsymbol{\zeta}(t) = P_{\boldsymbol{\zeta}} \left(\frac{1}{\sqrt{B}} \boldsymbol{\Sigma}_{\parallel}^{1/2}(\boldsymbol{\zeta}) d\boldsymbol{W}(t) - \frac{K}{2B} \nabla^{3} \mathcal{L}(\boldsymbol{\zeta}) [\widehat{\boldsymbol{\Sigma}}_{\Diamond}(\boldsymbol{\zeta})] dt \right)$ *K* times of SGD; Local SGD with $H = \beta / \eta$ when $\beta \to \infty$ $H \sim \eta^{-1}$ to see the benefit, $H \sim \eta^{-2}$ to maximize it! Cannot find valid SDE approximation on the manifold for more aggressive scalings.