Evaluating zero-shot image classification based on visual language model with relation to background shift

Flávio Santos, Maynara Souza, and Cleber Zanchettin faos@cin.ufpe.br, mds3@cin.ufpe.br, and cz@cin.ufpe.br Universidade Federal de Pernambuco - Brazil

Image Background Sensitivity

With the advancements in visual language models, it's crucial to address potential biases. While standard computer vision models may exhibit bias towards background information, the evaluation of VLMs remains a pressing need. Ensuring fairness and mitigating biases in these models is necessary for their responsible deployment and accurate interpretation of textual and visual information.

Zero-shot image classifier based on VLMs

 $s(c,x) = \frac{1}{|D(c)|} \sum_{d \in D(c)} \phi(d,x); \quad P(x) = \operatorname*{argmax}_{c \in C} s(x,c)$

For a given image x and a class c, the process calculates the average of similarities (denoted as ϕ) between x and each descriptor text embedding d belonging to class c. The set of descriptions, referred to as D(c), is obtained from the LLM, and ϕ represents the VLM.

Evaluation protocol

What is the impact of background shifts on VLM image classifiers?

How do similarity scores for images with different backgrounds impact model performance?

Experiments

Datasets: ImageNet-9 and RIVAL10 Architectures: ResNet-18 and ViT VLMs: CLIP and ALIGN

Methods: ActDiff, GradMask, ADA and RRR

Original

Mixed-same Mixed-rand Mixed-next same class background

random class background next class background

Background challenge results

ResNe ResNe ViT

ViT CLIP

ALIGN

GPT+

GPT+A

ResNe

ResNe

ViT ViT CLIP ALIGN GPT+ GPT+

Rand

			Mixed	Mixed	Mixed	BG	
Arch.	Method	Data	same	rand	next	Gap	Orig.
sNet-18	Standard	IN9	92.6	82.9	80.2	9.6	96.1
sNet-18	ActDiff	IN9	90.2	84.4	83.2	5.8	93.4
-	Standard	IN9	94.1	86.8	84.6	7.3	98.3
-	ActDiff	IN9	95.9	90.2	89.4	5.7	98.9
IP	Top-1	IN9	86.4	78.7	77.2	7.7	92.5
IGN	Top-1	IN9	85.7	79.9	77.3	5.7	91.7
PT+CLIP	Top-1	IN9	89.3	80.8	79.2	8.4	94.0
T+ALIGN	Top-1	IN9	87.2	79.5	78.3	7.6	92.0
sNet-18	Standard	R10	95.0	87.8	88.6	7.1	99.1
sNet-18	ActDiff	R10	94.9	86.5	87.1	8.3	98.7
_	Standard	R10	95.3	87.9	88.6	7.3	99.2
-	ActDiff	R10	96.9	92.2	91.4	4.6	99.6
IP	Top-1	R10	94.0	89.4	89.0	4.6	97.3
IGN	Top-1	R10	96.1	93.3	92.6	2.8	98.6
PT+CLIP	Top-1	R10	94.0	89.8	89.7	4.2	97.9
T+ALIGN	Top-1	R10	94.5	91.2	91.2	3.3	97.1

Interpretability analysis

LLM+VLM

ChatGPT+CLIP

Original

Mixed-Rand

Deer

Feature analysis

Mixed-rand

Mixed-next

Feature legend 0 Antlers or smaller, bony knobs called pedicles 1 Different deer species may have specific characteristics, such as the size and shape of their antlers, body size. or distinctive markings on their fur 2 Ears on the sides of the head, which can be alert and mobile 3 Four-legged mammal 4 Graceful and slender body 5 Hooves on the feet 6 Large, round eyes 7 Short tail 8 Various coat colors and patterns depending on the species and season, such as brown, tan, gray, or reddish

The SV metric quantifies the change in s(c, x) when predicting challenge images. This function calculates the ratio of these changes relative to the similarity score of the corresponding original image.

GP[·] GP GP GP[·] GP[·] GP[·] GP[·] GP[·]

Informática UFPE

Score variability analysis

 $SV(x_{original}, x_{challenge}, c) = \frac{s(c, x_{original}) - s(c, x_{challenge})}{s(c, x_{original})}$

Category c can either be the target category or the predicted category.

		ImageN	let-9	RIVAL10		
Model	Metric	Target	Pred.	Target	Pred.	
T+CLIP	SV+	5.93	13.5	5.5	17.1	
T+ALIGN	SV+	22.31	1.0	10.5	27.5	
T+CLIP	SV-	10.05	4.4	11.6	3.7	
T+ALIGN	SV-	24.07	10.4	20.0	11.7	
T+CLIP	SV+	5.03	19.2	5.0	22.9	
T+ALIGN	SV+	21.16	77.3	9.4	40.6	
T+CLIP	SV-	12.31	4.1	15.2	5.3	
T+ALIGN	SV-	28.71	26.8	24.4	10.7	

Summary

All tested models struggle with background shifts.

- The ALIGN model performed best in most metrics.
- ChatGPT+CLIP and standalone CLIP models saw a larger drop in accuracy.
- ChatGPT+CLIP assigns low similarity scores to the object category against non-target backgrounds.
- ChatGPT+ALIGN higher assigns scores to the non-target category.

