b min_ref Music Information Retrieval

Representation Evaluation Framework

Christos Plachouras, Pablo Alonso-Jiménez, Dmitry Bogdanov Music Technology Group, Universitat Pompeu Fabra, Spain

What is it?

mir_ref is an **open-source library** for **evaluating audio representations** (embeddings or others) on a variety of music-related downstream tasks and datasets.

It provides **ready-to-use** tasks, datasets, deformations, embedding models, and downstream models for **configbased**, **no-code** experiment orchestration. Components are **modular**, so it's easy to add custom embedding models, datasets, metrics etc. Audio-specific results **analysis and visualization tools** are also provided.

What is it for?

- Easily reproducible, holistic evaluation experiments
- · Local aid for embedding model development
- Benchmarking
- To answer questions like:
 - How large should the downstream model be?
 - How densely should I sample embeddings?
 - How robust is my model to pitch shifting?
 - Can my model distinguish pitch classes?

How do I use it?

Clone/Fork min_ref, install requirements, and run

\$ python run.py -c my_config

to run all experiments in the config file. Individual components can be run with deform, extract, train, and evaluate. Sharing the config file allows anyone to reproduce your experiment.

Please give us feedback and tell us use-cases!

Why is it needed?

Representation evaluation in MIR is

- fragmented
- tedious to set up (gathering/handling data, complexity)
- narrow-scoped (robustness? efficiency? explainability?)

							antimization								
		model					optimization							output	
	cod	e	type		layer(s)		HPC)	initial lr		wd		aggr.		
EffNet-Discogs			MLP		512				$1e^{-3}$		$1e^{-5}$		pred.		
MusiCNN	\checkmark		SVM		NA			N		A	NA		1	pred.	
OpenL3			MLP		512-128		\checkmark	$1e^{\{-5,$, -3	$1e^{\{-5,,-3\}}$., -3	pred.	
NeuralFP			LC		NA					?		?		- ?	
CLMR	\checkmark		LC		NA			$3e^{-}$		-4	1e		-6	repr.	
MERT	\checkmark		MLP		512		\checkmark	1	$1e^{\{-4,,-2\}}$?		repr.		
COALA	\checkmark		MLP		256			1e		-3		$1e^{-4}$		repr.	
JukeMIR	\checkmark	L	LC/MLP		NA/512		\checkmark	1	$1e^{\{-5,,-3\}}$		$1e^{\{-3,,0\}}$		repr.		
MuLaP	\checkmark		MLP		512				$1e^{-3}$		$1e^{-2}$		pred.		
	Ire	н	po	50	nre	ing	g		ťy	on		н	Ч	ger	Ŀ.
	gen	nst	no	do	gei	50	gi.	nre	nti	loti		nst	itc	sin	tec
	J.	J. j	J. 1	J. 1	Z	l ta	tag	gei	ide	em	y.	thi	Чþ	set	set
	Ģ	Ģ	Ď	Ď	Z	Æ	Q	A	Μ	2	ke	yn	ynt	cal	cal
	БМ	ΕW	Į	Į	E	Į	MS	Η	ΗM	EN	GS	NS	Ns.	Vo	Ň
EffNet-Discogs	1	1	1	1		1		1							
MusiCNN	•	•	•	•	\checkmark	•		•							
NeuralFP					1				\checkmark						
CLMR						\checkmark	\checkmark								
MERT	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
COALA					\checkmark							\checkmark			

Example evaluation

We conducted an evaluation of 7 embedding models, 6 datasets and tasks, 4 deformations, and 5 downstream model configurations, and found:

• Most models struggle significantly with white noise and gain reduction, but do better with mp3 compression.

• The downstream setup often impacts performance significantly; some information is not linearly separable.

• Most models can't distinguish pitch classes.

(Scan QR for full results, or github.com/chrispla/mir_ref)

JukeMIR MuLaP

Code &

Results