$K\Lambda IS1$ Refined Tensorial Radiance Field: Harnessing Coordinate-Based Networks for Novel View Synthesis from Sparse Inputs

Optimization and Statistical Inference LAB

Introduction

The multi-plane encoding approach allows NeRFs to learn fine-grained details rapidly and achieves outstanding performance, however, it has limitations in representing the global context of the scene such as object shapes and dynamic motion over times when available training data is sparse.

In this work, we propose refined tensorial radiance fields that harness coordinate-based networks capturing low-frequency signals, while multi-plane network focuses on fine-grained details simultaneously. Empirically, the proposed outperform all baselines for the task with static and dynamic scenes under sparse inputs.

Motivation

The multi-plane encoding with TV loss still struggles to represent global context in the sparse-inputs (HexPlane, CVPR2023).

T=0.0

T=0.7T=0.5HexPlane (CVPR2023)

T=0.0

T=0.2

T=0.7

Mingyu Kim¹, Jun-Seong Kim², Se-Young Yun¹ and Jin-Hwa Kim³

KAIST AI¹⁾, POSTECH EE²⁾, NAVER AI Lab. & SNU AIIS³⁾ {callingu, yunseyoung}@kaist.ac.kr, gucka28@postech.ac.kr, j1nhwa.kim@navercorp.com

Method

with multi-plane grid features.

Quantitative Results

Evaluation on Static NeRF dataset (8 views)

Models	PSNR ↑								Avg.
	chair	drums	ficus	hotdog	lego	materials	mic	ship	PSNR '
Simplified_NeRF	20.35	14.19	21.63	22.57	12.45	18.98	24.95	18.65	19.22
DietNeRF	21.32	14.16	13.08	11.64	16.12	12.20	24.70	19.34	16.57
HALO	24.77	18.67	21.42	10.22	22.41	21.00	24.94	21.67	20.64
FreeNeRF	26.08	<u>19.99</u>	18.43	<u>28.91</u>	24.12	<u>21.74</u>	24.89	<u>23.01</u>	23.40
DVGO	22.35	16.54	19.03	24.73	20.85	18.50	24.37	18.17	20.57
VGOS	22.10	18.57	19.08	24.74	20.90	18.42	24.18	18.16	20.77
iNGP	24.76	14.56	20.68	24.11	22.22	15.16	26.19	17.29	20.62
TensoRF	26.23	15.94	21.37	28.47	26.28	20.22	26.39	20.29	23.15
K-Planes	<u>27.30</u>	20.43	23.82	27.58	<u>26.52</u>	19.66	27.30	21.34	<u>24.24</u>
Ours	28.02	19.55	20.30	29.25	26.73	21.93	<u>26.42</u>	24.27	24.56

Qualitatively, the proposed method enables to represent both lowfrequency and high-frequency details simultaneously, whereas baselines inevitably suffer from performance issues due to artifacts **K-Planes**

We developed a new method where the coordinate network captures global context, like object shapes and dynamic motions, and it also incorporates multi-plane encoding to precisely describe the finest details.

Qualitative Results

While baselines struggle to learn consistently with varying TV regularization. the proposed method effectively handles novel-view synthesis, leading to reliable performance regardless of the regularization.

Conclusion