Accelerated Sampling of Rare Events using a Neural Network Bias Potential

Xinru Hua, Rasool Ahmad, Jose Blanchet, Wei Cai

Stanford **ENGINEERING**

Motivation

• In material science and bio-chemistry, we want to sample rare events that are associated with specific physical phenomena and estimate their probabilities.

• In this work, we focus on sampling the rare event that one molecule transits between two stationary metastable states in 2D.

• The molecule follows the over-damped Langevin Dynamics.

$$d\mathbf{x} = -\nabla U(\mathbf{x})/(m\gamma)$$

Energy function

 $\cdot dt + \sqrt{2k_BT/(m\gamma)} \cdot dB(t).$

Brownian motion

• The energy function is:

$$U(\mathbf{x}) = 0.05y + \frac{1}{6} \left(4(1 - x^2 - y^2)^2 + 2(x^2 - 2)^2 + [(x + y)^2 - 1]^2 + [(x - y)^2 - 1]^2 - 2 \right).$$
(2)

• The two stationary metastable states are A and B, minima of the energy field.

• We are interested in the rate event that the molecule starts from A and eventually goes to B.

Problem

4.000 3.444 2.889 2.333 - 1.778 - 1.222 - 0.667 0.111 -0.444 -1.000

Optimization Problem

We represent the trajectories as $\nu = (x_0, x_1, \dots, x_N)$ and our bias potential is parametrized by neural network θ .

Our objectives are:

1. Ensure all the trajectories reach B

2. The distribution of successful trajectories is similar to the distribution of unbiased successful trajectories

Optimization Problem

We represent the trajectories as $\nu = (x_0, x_1, \dots, x_N)$ and our bias potential is parametrized by neural network θ .

Our objectives are:

1. Ensure all the trajectories reach B

successful trajectories

2. The distribution of successful trajectories is similar to the distribution of unbiased

(eq.7 in the paper)

Method

Training Process

The DNN-based bias potential eventually make a large portion of the trajectories to move from A to B.

Training Results

 $U_B^{gt}(x)$, the ground-truth bias potential at 1200K

Combine Past Knowledge

Combine Training Process

The input is all the training trajectories (positions of the molecule only).

The training result is one bias potential that can generate trajectories in both channels.

Results at 1200 Kelvin. The successful trajectories look similar to the Monte Carlo sampled trajectories.

Results

Numerical Comparison

sampling.

Coefficient of Variation (CV) is the ratio between std. and the mean.

Temperature 1200K	Confidence Interval	CV	Success Rate	ESS ratio	$t_{ m train}$	$t_{ m test}$
Our method A	$\begin{array}{c} 4.037 \pm 0.342 \mathrm{e}{-6} \\ 3.232 \pm 0.743 \mathrm{e}{-5} \\ 4.410 \pm 0.412 \mathrm{e}{-6} \end{array}$	3.0933	0.770	0.095	122	16
Our method B		8.402	0.396	0.014	14	16
Monte Carlo		1505.846	4.410e-6	-	-	708

Efficient Sample Size (ESS) measures the ratio of samples are effective in importance

$$\mathrm{ESS} = \frac{(\sum_{i:\nu_i \in S} W_i)^2}{\sum_{i:\nu_i \in S} W_i^2}.$$

Robustness

Our method is robust in scaling up:

★The standard deviation of the estimator decreases as $\mathcal{O}\left(1/\sqrt{n}\right)$. ★The ESS and computation time grows linearly.

Thank you!

Xinru Hua: huaxinru@stanford.edu