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Motivation

Idea: What if we consider disentanglement from a causal mechanism perspective?

Causal Mechanism Equivalence
● We often observe high-dimensional data but 

desire to extract abstract causal variables and 

their structure.

● Disentangling causal factors is a challenging 

task and without any inductive bias, it is an 

impossible endeavor [1].

● Disentangled causal representations are useful 

for scheduling, planning, robustness to 

distribution shifts, and fairness in downstream 

applications.

Empirical Evaluation

● We propose a reformulation of causal 

disentanglement from the perspective of 

independent causal mechanisms and 

generalize iVAE [2] to causally 

factorized distributions.

● We design a framework, ICM-VAE, for 

causal representation learning under 

supervision from labels.

● We theoretically show identifiability of 

causal mechanisms up to permutation 

and element-wise reparameterization.

References

[1] F. Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of 

Disentangled Representations. ICML 2019.

[2] I. Khemakhem et al. Variational Autoencoders and Nonlinear ICA: A Unifying 

Framework. AISTATS 2020.

.

ICM-VAE Framework

Key Contributions

Causal Disentanglement

● High disentanglement (D), completeness (C), and interventional 

robustness (IRS) indicates causal mechanism disentanglement.

● ICM-VAE disentangles causal factors significantly better than other 

causal and acausal baselines.

Counterfactual Generation

Structural Causal Flow

● Parameterize causal mechanisms as nonlinear diffeomorphic 

functions via autoregressive normalizing flows

Causal Disentanglement Prior

● Prior exponential family distribution to causally factorize the latent space and disentangle causal 

mechanisms

Three sufficient conditions for causal mechanism equivalence:

●     and     must be permutation equivalent

● Equivalence of conditional sufficient statistics: 

● Natural parameter mechanism equivalence: 

⇒ Causally Disentangled and Causal Mechanism Permutation Equivalent
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mechanisms

Issue: Learned mechanisms may be different than true underlying mechanisms but produce same marginal.

Experiments on Pendulum, Flow, and CausalCircuit image datasets with 

nonlinear ground-truth mechanisms and four continuous-valued causal 

factors
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