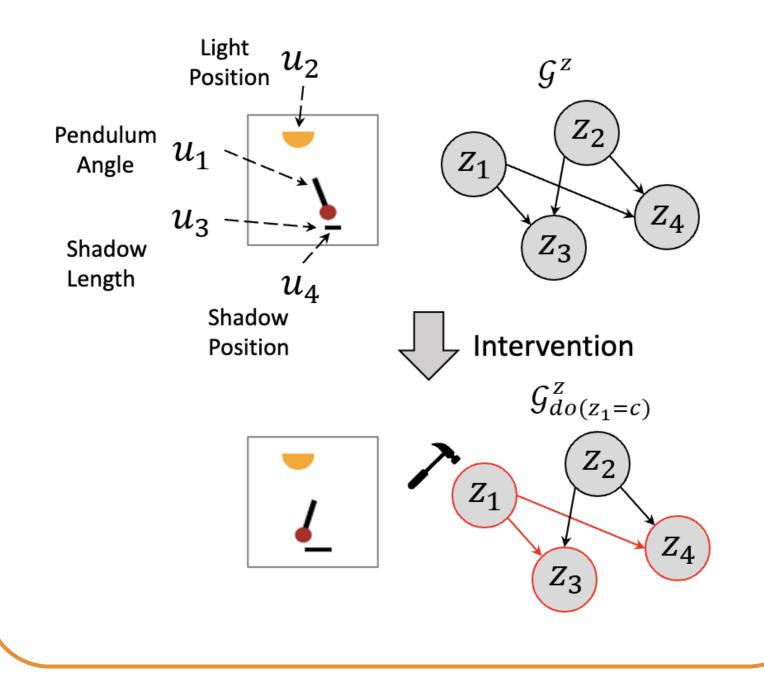


Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms

Motivation

- We often observe high-dimensional data but desire to extract abstract causal variables and their structure.
- Disentangling causal factors is a challenging task and without any inductive bias, it is an impossible endeavor [1].
- Disentangled causal representations are useful for scheduling, planning, robustness to distribution shifts, and fairness in downstream applications.



Key Contributions

- We propose a reformulation of causal disentanglement from the perspective of independent causal mechanisms and generalize iVAE [2] to causally factorized distributions.
- We design a framework, ICM-VAE, for causal representation learning under supervision from labels.
- We theoretically show identifiability of causal mechanisms up to permutation and element-wise reparameterization.

References

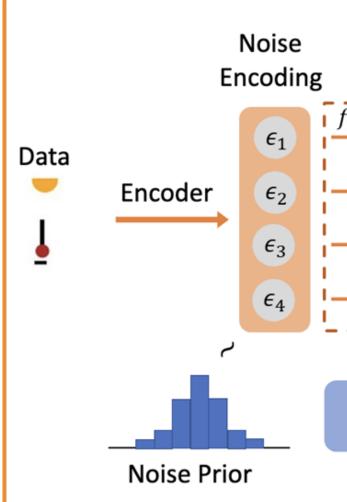
[1] F. Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019. [2] I. Khemakhem et al. Variational Autoencoders and Nonlinear ICA: A Unifying Framework. AISTATS 2020.

Acknowledgements

This work is supported in part by NSF 1910284, 1946391, 2147375 and NIH P20GM139768

True SCM $z_1 = \epsilon_1 \sim \mathcal{N}(0, 1)$ $z_2 = \epsilon_2 \sim \mathcal{N}(0, 1)$ $z_3 = az_1 + bz_2 + \epsilon_3$ $z_4 = cz_1 + dz_2 + \epsilon_4$

- z and \hat{z} must be permutation equivalent
- Natural parameter m



Structural Causal Flow

$$z_{i} = f_{i}(\epsilon_{i}; z_{\mathbf{pa}_{i}}) = \exp(a_{i}) \cdot \epsilon_{i} + b_{i} \qquad \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \epsilon_{4} \end{pmatrix} \mapsto \begin{pmatrix} f_{1}(\epsilon_{1}) \\ f_{2}(\epsilon_{2}) \\ f_{3}(\epsilon_{3}, z_{1}, z_{2}) \\ f_{4}(\epsilon_{4}, z_{1}, z_{2}) \end{pmatrix} = \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix}$$

Causal Disentanglement Prior

mechanisms

 p_{θ}

 $p_{ heta}(z_i|z)$

Aneesh Komanduri¹, Yongkai Wu², Feng Chen³, and Xintao Wu¹

Marginals

¹University of Arkansas, ²Clemson University, ³University of Texas at Dallas

Causal Mechanism Equivalence

Violation of disentanglement of causal mechanisms from traditional disentanglement

Learned SCM $\hat{z}_1 = \hat{\epsilon}_1 \sim \mathcal{N}(0, 1)$ $\hat{z}_2 = \hat{\epsilon}_2 \sim \mathcal{N}(0,1)$ $\hat{z}_3=b\hat{z}_1+a\hat{z}_2+\hat{\epsilon}_3$

 $\hat{z}_4 = d\hat{z}_1 + c\hat{z}_2 + \hat{\epsilon}_4$

 $z_1 \sim \mathcal{N}(0,1)$ $z_2 \sim \mathcal{N}(0, 1)$ $z_3 \sim \mathcal{N}(0, \sqrt{a^2+b^2+1^2})$ $z_4 \sim \mathcal{N}(0, \sqrt{c^2 + d^2 + 1^2})$

Issue: Learned mechanisms may be different than true underlying mechanisms but produce same marginal. Idea: What if we consider disentanglement from a causal mechanism perspective? $p_{\theta}(z_i|z_{\mathbf{pa}_i}) = p_{\hat{\theta}}(z_i|z_{\mathbf{pa}_i})$ Three *sufficient* conditions for causal mechanism equivalence:

• Equivalence of conditional sufficient statistics: $\mathbf{T}_i(z_i|z_{pa_i}) = D_{ij}\hat{\mathbf{T}}_j(z_j|z_{pa_j})$

echanism equivalence:
$$m{\lambda}_i(z_{pa_i}, u) = D_{ij} \hat{m{\lambda}}_j(z_{pa_j}, u)$$

⇒ Causally Disentangled and Causal Mechanism Permutation Equivalent

ICM-VAE Framework

Structural Causal Flow Causal $z = f^{\rm RF}(\epsilon)$ Representation $r_1(\epsilon_1)$ Z_1 Z_1 Reconstruction $f_2(\epsilon_2)$ Decoder Z_2 $f_3(\epsilon_3; z_{\mathbf{pa}_3})$ $f_4(\epsilon_4; z_{\mathbf{pa}_4})$ n=4 $p_{\theta}(z_3|z_{\mathbf{pa}_3}, u_3) \quad p_{\theta}(z_4|z_{\mathbf{pa}_4}, u_4)$ $p_{\theta}(z_1|u_1)$ $p_{\theta}(z_2|u_2)$ $p_{\theta}(z_i|z_{pa_i}, u_i)$ u_4 u_3 u_2 u_1 **Causal Mechanism Factorization**

Causal Disentanglement Prior

• Parameterize causal mechanisms as nonlinear **diffeomorphic**

functions via autoregressive normalizing flows

• Prior exponential family distribution to causally factorize the latent space and disentangle causal

$$\begin{aligned} (z|u) &= \prod_{i=1}^{n} p_{\theta}(z_{i}|z_{\mathbf{pa}_{i}}, u_{i}) = \prod_{i=1}^{n} p(u_{i}) \left| \frac{\partial \lambda_{i}(u_{i}; z_{\mathbf{pa}_{i}})}{\partial u_{i}} \right|^{-1} & \text{mechanisms} \\ z_{\mathbf{pa}_{i}}, u_{i}) &= h_{i}(z_{i}) \exp(\mathbf{T}_{i}(z_{i}|z_{\mathbf{pa}_{i}}) \lambda_{i}(G_{i}^{z} \odot z, u_{i}) - \psi_{i}(z, u)) \end{aligned}$$

up to

 $\hat{z}_1 \sim \mathcal{N}(0,1)$

 $\hat{z}_2 \sim \mathcal{N}(0,1)$

recover mechanisms permutation

 $\hat{z}_3 \sim \mathcal{N}(0, \sqrt{b^2 + a^2 + 1^2})$

 $\hat{z}_4 \sim \mathcal{N}(0, \sqrt{d^2 + c^2 + 1^2})$

Empirical Evaluation

Experiments on Pendulum, Flow, and CausalCircuit image datasets with nonlinear ground-truth mechanisms and four continuous-valued causal factors

Causal Disentanglement

- High disentanglement (D), completeness (C), and interventional robustness (IRS) indicates causal mechanism disentanglement.
- ICM-VAE disentangles causal factors significantly better than other causal and acausal baselines.

Dataset	Model	D	C	IRS
Pendulum	β -VAE	0.182	0.285	0.449
	iVAE	0.483	0.385	0.670
	CausalVAE	0.885	0.539	0.817
	SCM-VAE	0.764	0.475	0.829
	ICM-VAE (Ours)	0.997	0.882	0.869
Flow	β -VAE	0.308	0.332	0.452
	iVAE	0.730	0.481	0.674
	CausalVAE	0.819	0.522	0.707
	SCM-VAE	0.854	0.483	0.811
	ICM-VAE (Ours)	0.988	0.598	0.893
CausalCircuit	β -VAE	0.692	0.442	0.982
	iVAE	0.745	0.541	0.992
	CausalVAE	0.886	0.625	0.994
	SCM-VAE	0.867	0.652	0.993
	ICM-VAE (Ours)	0.982	0.689	0.999

Counterfactual Generation

