

The built environment and induced transport CO₂ emissions A double machine learning approach to account for residential self-selection

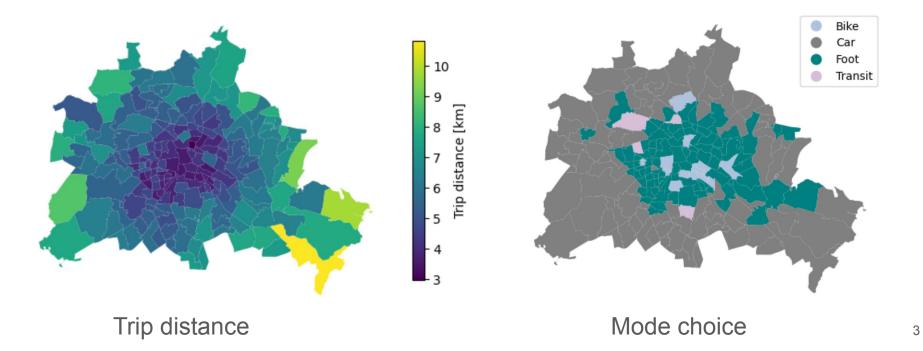
Florian Nachtigall, Felix Wagner, Peter Berrill, Felix Creutzig

Climate relevance

Where to locate new housing to minimize travel-related CO₂ emissions?

Introduction

Travel behavior differs between urban & suburban residents



Why do emissions differ between urban & suburban areas?

Wotivating question Why do emissions differ between urban & suburban areas?

Two possible explanations

- 1. Different kind of people (residential self-selection)
- 2. Differences in the built environment

Research question What is the effect of <u>built environment</u> on <u>travel behavior</u> and related CO_2 emissions when accounting for residential <u>self-selection</u>?

Introduction Contribution

Existing work

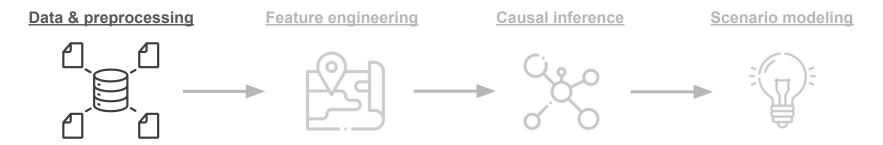
- Non-linear effect estimation wo/ confounding factors (ML methods)
- Linear (causal) effect estimation w/ confounding factors (propensity score matching & sample selection)

Our contribution

- Combining both approaches using double machine learning
 - Model nonlinearity
 - Control for confounding effects
 - Capture moderating influence and effect heterogeneity

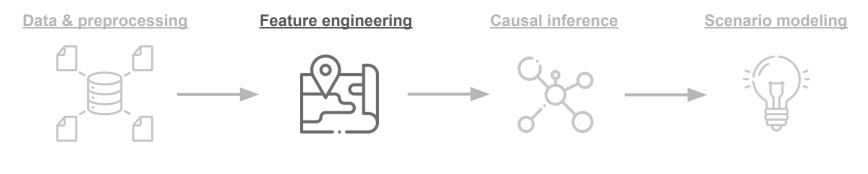
Methods

I. Data & preprocessing II. Feature engineering III. Causal inference



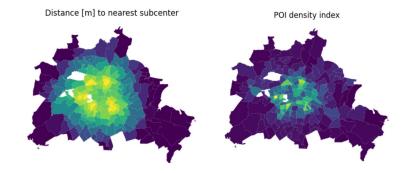
- Travel diaries from survey (32k participants)
- Calculate per household emissions based on travel distance, mode, and emission factors
- Average travel-related emissions per residential zip code

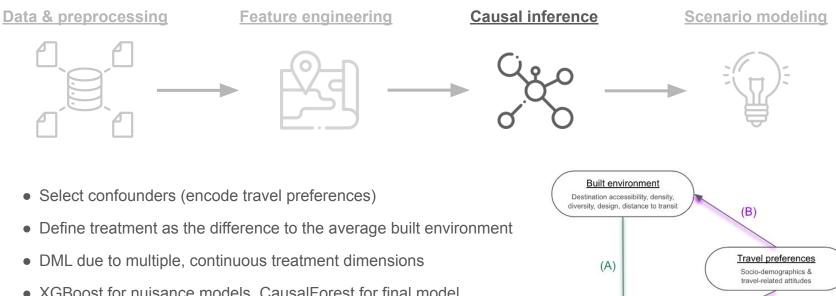
Ori_Plz	Des_Plz	Mode	Trip_Purpose	Trip_Duration	Trip_Distance	emissions
10115	10115	Transit	Home-Work	20	729.0	47.385
10115	10115	Transit	Work-Home	30	729.0	47.385
10179	10179	Foot	Home-Leisure	30	7000.0	0.000
10179	10179	Foot	Leisure-Home	10	254.0	0.000
10179	10179	Foot	Leisure-Home	30	7000.0	0.000
12619	12169	Car	Home-Work	60	28110.0	4553.820
12169	12619	Car	Work-Home	60	26952.0	4366.224
12619	15344	Transit	Home-Work	70	22268.0	1447.420
12623	15366	Car	Home-Shopping	10	2581.0	418.122
15366	12623	Car	Shopping-Home	10	2581.0	418.122



5D's of compact development	Feature name	Description
	Distance to center	Distance to neighborhood with highest POI density
Destination accessibility	Distance to subcenter	Least distance to any of the 10 neighborhoods with high- est POI density
	POI density index	Local POI density for offices, schools, kindergarten, and universities
Density	Population density	Population density of the built-up area
Diversity	Land use	Share of mix-use areas
Design	Car-friendliness index	Provision of expressway kilometers per capita
Design	Walkability index	Intersection density in the built-up area
Distance to transit	Transit accessibility index	Gravity model-based index describing the average spatio- temporal transit accessibility of a neighborhood

 Table 2: Built environment characteristics. Overview of all built environment characteristics considered in



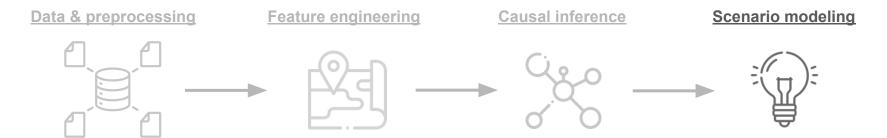


- XGBoost for nuisance models, CausalForest for final model (EconML implementation)
- Examine moderating effects

(C)

Figure 1. Directed acyclic graph (DAG)

<u>Travel behavior</u> Travel-related CO, emissions



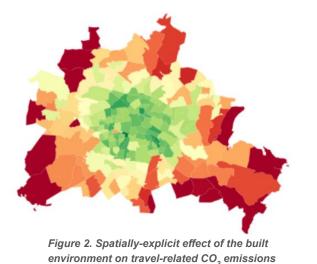
- Apply model to evaluate locations of planned residential projects
- Compare different urban planning strategies such as TOD

Results

I. Causal effect estimation II. Moderating effects III. Scenario modeling

Results Effect of the built environment

- → Travel-related CO₂ emissions differ by a factor of two between urban and suburban neighborhoods in Berlin because of the built environment
- → Destination accessibility has the strongest impact on emissions



Percentage difference in travel-related *CO* emissions compared to city average [%]

5D's of compact development	Feature name	Effect share
	Distance to center	51.2%
Destination accessibility	Distance to subcenter	15.2%
	POI density index	11.1%
Density	Population density	11.4%
Diversity	Land use	0.3%
Design	Car-friendliness index	
Design	Walkability index	6.4%
Distance to transit	Transit accessibility index	4.3%

Table 2. Decomposition of built environment effect.

Results Moderating effects

- → Household size, income, age, and car ownership are associated with a higher effect of the built environment
- → Positive environmental attitudes with a lower effect of the built environment

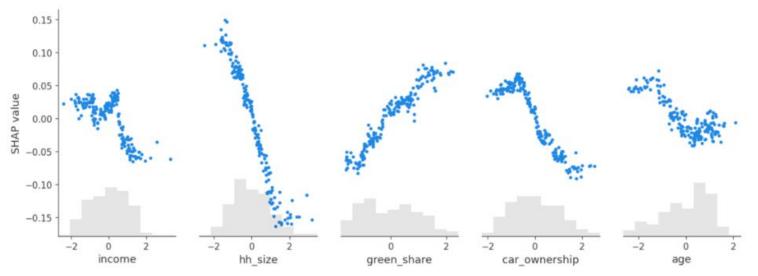


Figure 3. Moderating influence on the built environment effect of distance to center.

Results

Case study of planned residential projects

Induced transport CO2 emissions of planned residential projects 70% above \rightarrow the theoretical optimum of urban densification

city average

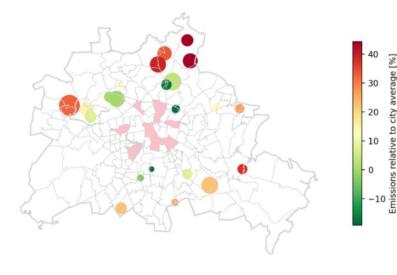


Figure 4B. Induced transport CO, emissions of planned residential projects.

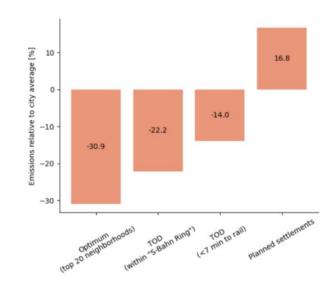


Figure 4A. Induced transport CO, emissions of residential planning strategies.

Discussion & conclusion

Advancing evidence-based low-carbon residential planning

- Large effect of the built environment on travel behavior
 - Emissions differ by a factor of two between the city center and the outskirts
 - Declining accessibility of destinations (74%) and population density (15%) drive emissions
- Moderating effects
 - Largest effect for old, high-income, and car-owning households
- Limitations masking the true effect of the built environment
 - Incomplete characterization of the built environment and travel preferences
 - Oversimplified conceptual representation (e.g. ignoring mediating effect of the built environment on travel preferences)
 - Partial violation of causal inference assumptions (e.g. spatial spillover effects)

The built environment and induced transport CO₂ emissions

A double machine learning approach to account for residential self-selection

Florian Nachtigall, Felix Wagner, Peter Berrill, Felix Creutzig

Thanks for listening!

https://floriannachtigall.github.io/ nachtigall@tu-berlin.de

References

- [1] P. Jaramillo, S. Kahn Ribeiro, P. Newman, S. Dhar, O.E. Diemuodeke, T. Kajino, D.S. Lee, S.B. Nugroho, X. Ou, A. Hammer Strømman, and J. Whitehead. Transport. In P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, and J. Malley, editors, *Climate Change 2022: Mitigation of Vorking Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, book section 10. Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022.
- [2] F Creutzig, P Agoston, J C Minx, J G Canadell, R M Andrew, C Le Quéré, and S Dhakal. Urban infrastructure choices structure climate solutions. *Nature Climate Change*, 6(12):1054–1056, 2016.
- [3] Frans Dieleman and Michael Wegener. Compact city and urban sprawl. Built environment, 30(4):308-323, 2004.
- [4] Veerle Van Holle, Benedicte Deforche, Jelle Van Cauwenberg, Liesbet Goubert, Lea Maes, Nico Van de Weghe, and Ilse De Bourdeaudhuij. Relationship between the physical environment and different domains of physical activity in european adults: a systematic review. BMC public health, 12(1):1–17, 2012.
- [5] Gavin R McCormack and Alan Shiell. In search of causality: a systematic review of the relationship between the built environment and physical activity among adults. International journal of behavioral nutrition and physical activity, 8:1–11, 2011.
- [6] David W Barnett, Anthony Barnett, Andrea Nathan, Jelle Van Cauwenberg, and Ester Cerin. Built environmental correlates of older adults' total physical activity and walking: a systematic review and meta-analysis. International journal of behavioral nutrition and physical activity, 14(1):1–24, 2017.
- [7] Ester Cerin, Andrea Nathan, Jelle Van Cauwenberg, David W Barnett, and Anthony Barnett. The neighbourhood physical environment and active travel in older adults: a systematic review and meta-analysis. International journal of behavioral nutrition and physical activity, 14(1):1–23, 2017.
- [8] Laura Aston, Graham Currie, Alexa Delbosc, Md Kamruzzaman, and David Teller. Exploring built environment impacts on transit use-an updated meta-analysis. *Transport reviews*, 41(1):73–96, 2021.
- [9] Anna Ibraeva, Gonçalo Homem de Almeida Correia, Cecília Silva, and António Pais Antunes. Transit-oriented development: A review of research achievements and challenges. Transportation Research Part A: Policy and Practice, 132:110–130, 2020.
- [10] Xinyu (Jason) Cao, Patricia L. Mokhtarian, and Susan L. Handy. Examining the impacts of residential self-selection on travel behaviour: A focus on empirical findings. 29(3):359–395. Publisher: Routledge _eprint: https://doi.org/10.1080/01441640802539195.
- [11] Xiaodong Guan, Donggen Wang, and Xinyu Jason Cao. The role of residential self-selection in land use-travel research: a review of recent findings. 40(3):267–287. Publisher: Routledge _eprint: https://doi.org/10.1080/01441647.2019.1692965.
- [12] Mahdi Aghaabbasi and Saksith Chalermpong. Machine learning techniques for evaluating the nonlinear link between builtenvironment characteristics and travel behaviors: a systematic review. *Travel behaviour and society*, 33:e100640–e100640, 2023.
- [13] Jason Cao and Tao Tao. Using machine-learning models to understand nonlinear relationships between land use and travel. Transportation Research Part D: Transport and Environment, 123:103930, 2023.
- [14] Patricia L Mokhtarian and Xinyu Cao. Examining the impacts of residential self-selection on travel behavior: A focus on methodologies. Transportation Research Part B: Methodological, 42(3):204–228, 2008.
- [15] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters, 2018.

- [16] Reid Ewing and Robert Cervero. Travel and the built environment: A meta-analysis. Journal of the American planning association, 76(3):265–294, 2010.
- [17] Stefan Hubrich, Frank Ließke, Rico Wittwer, Sebastian Wittig, and Regine Gerike. Methodenbericht zum forschungsprojekt.,mobilität in städten-srv 2018 ". 2019.
- [18] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.openstreetmap.org, 2017.
- [19] VBB Verkehrsverbund Berlin-Brandenburg GmbH. GTFS data berlin-brandenburg (VBB).
- [20] Offene daten berlin | offene daten lesbar für mensch und maschine. das ist das ziel.
- [21] P Cazzola and P Crist. Good to go? assessing the environmental performance of new mobility. 2020.
- [22] Veronique Van Acker, Patricia L Mokhtarian, and Frank Witlox. Car availability explained by the structural relationships between lifestyles, residential location, and underlying residential and travel attitudes. *Transport Policy*, 35:88–99, 2014.
- [23] Tao Lin, Donggen Wang, and Xiaodong Guan. The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination? 65:111–122.
- [24] Joachim Scheiner. Residential self-selection in travel behavior: Towards an integration into mobility biographies. Journal of Transport and Land Use, 7(3):15–29, 2014.
- [25] Microsoft Research. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.
- [26] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.
- [27] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. 2019.
- [28] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30, 2017.
- [29] Brian J Reich, Shu Yang, Yawen Guan, Andrew B Giffin, Matthew J Miller, and Ana Rappold. A review of spatial causal inference methods for environmental and epidemiological applications. *International Statistical Review*, 89(3):605–634, 2021.
- [30] Petter Næss. Residential self-selection and appropriate control variables in land use: Travel studies. 29(3):293–324. Publisher: Routledge_eprint: https://doi.org/10.1080/01441640802710812.
- [31] Joachim Scheiner. Transport costs seen through the lens of residential self-selection and mobility biographies. 65:126–136.
- [32] A Stewart Fotheringham and David WS Wong. The modifiable areal unit problem in multivariate statistical analysis. Environment and planning A, 23(7):1025–1044, 1991.
- [33] Ming Zhang and Nishant Kukadia. Metrics of urban form and the modifiable areal unit problem. Transportation Research Record, 1902(1):71–79, 2005.
- [34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Credits

- Pictures from unsplash.com
- Icons from flaticon.com

Appendix Poster

The built environment & induced transport emissions

A double machine learning approach to account for residential self-selection Florian Nachtigall, Felix Wagner, Peter Berrill, Felix Creutzig

Understanding why travel behavior differs between residents of urban centers and suburbs is key to sustainable urban planning. Especially in light of rapid urban growth, identifying housing locations that minimize travel demand and induced CO, emissions is crucial to mitigate climate change. While the built environment plays an important role, the precise impact on travel behavior is obfuscated by residential self-selection.

Research guestion

What is the effect of built environment on travel behavior and related CO, emissions when accounting for residential self-selection?

Methods

Use double machine learning (DML) to control for residential self-selection and obtain spatially explicit estimates of the effect of the built environment on travel-related CO, emissions for each neighborhood from observational data.

Figure 1. Directed acyclic graph (DAG) with direct (green) and confounding effect (pink)

Data & preprocessing

- · Travel diaries from 2017 SrV mobility survey (32k participants in Berlin)
- · Calculate emissions based on travel distance, mode, and emission factors
- · Average household travel-related emissions per residential zip code

Feature engineering

· Describe built environment along "5Ds": destination accessibility, density, diversity, design, and distance to transit

Causal inference

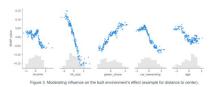
- · Estimate treatment effect of built environment from observation data · Confounders: Account for residential self-selection using information on
- socio-demographics and ownership of transport means
- Treatment level: Difference to average built environment
- · Model selection: DML due to multiple, continuous treatment dimensions
- XGBoost for nuisance models, CausalForest for final model (EconML) implementation)

Results

- → Treatment effect: Travel-related CO, emissions differ by a factor of two between urban and suburban neighborhoods in Berlin because of the built environment (see figure 2)
- → Effect decomposition: Declining accessibility of destinations (74%) and population density (15%) drive emissions (see table 1)
- → Moderating effects: Built environment effect is largest for old. high-income, and car-owning households (see figure 3)

Figure 2. Spatially-explicit effect of the built environment on travel-related CO, emission

5D's of compact development	Feature name	Effect share
	Distance to center	51.2%
Destination accessibility	Distance to subcenter	15.2%
	POI density index	11.1%
Density	Population density	11.4%
Diversity	Land use	0.3%
D !	Car-friendliness index	-
Design	Walkability index	6.4%
Distance to transit	Transit accessibility index	4.3%

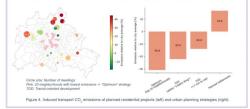


Case study

Assessment of planned housing projects in Berlin in terms of induced transport CO. emissions.

NEURAL INFORMATION PROCESSING SYSTEMS

→ 19 of 22 location will increase emissions, on average 17% above city's current average and 70% above ideal urban densification according to model (see figure 4)



Discussion

DML can advance evidence-based low-carbon urban planning

 Spatial explicit estimates of representative travel-related CO, emissions facilitate residential planning

Compact development is key to decarbonize urban transport

- · Increase destination accessibility and population density to reduce emissions
- Impact likely larger in stressed housing market as many people are not able to realize their urban preferences and use sustainable modes of transport

Limitations mask true effect of the built environment

- · Oversimplified conceptual representation
- (e.g. ignoring mediating effect of built environment on travel preferences) · Partial violation of causal inference assumptions
- (e.g. ignoring spatial spillover effects)

Conclusion

→ Double machine learning (DML) based on mobility surveys enables spatially targeted compact development to decarbonize urban transport

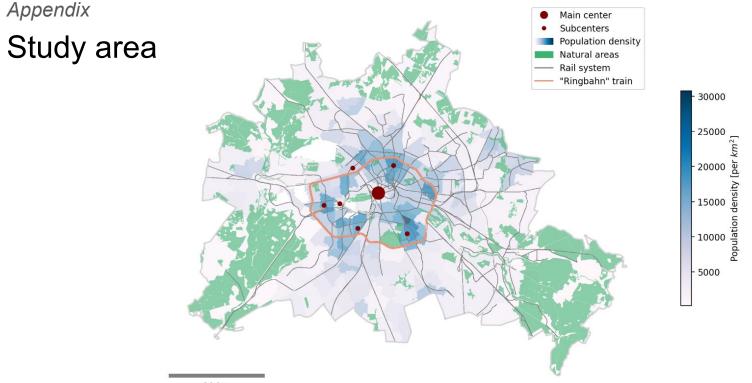


Figure 4: Built environment of Berlin, Germany. The center and subcenters, based on points of interest density, are indicated as dark red circles. Population density of neighborhoods is color coded in blue. Natural areas according to Berlin land use data [20] are marked in green. The public transportation rail network is drawn in gray, with the exception of the so-called "Ringbahn", a commuter rail line that circles central Berlin, which is highlighted in orange. We consider neighborhoods that are located outside of the "Ringbahn" and not within walking distance to be suburban.

Appendix

Travel behavior

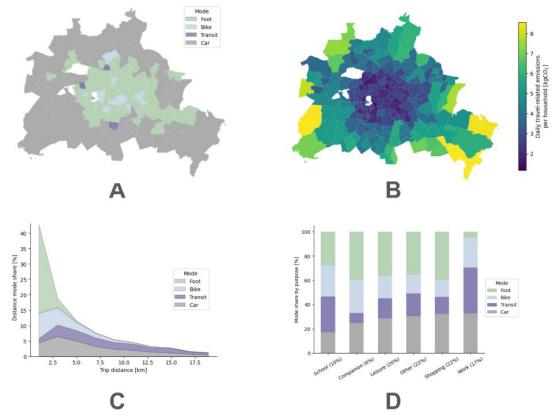


Figure 3: Overview of trip mode, purpose, distance, and related CO_2 emissions. (A) Predominant mode of transport for each neighborhood based on trip counts. (B) Average travel-related CO_2 emissions per household for each neighborhood. (C) Trip distance specific mode share. (D) Trip purpose specific mode share, ordered by increasing car share.

Methods

Feature engineering: Built environment & travel preferences

5D's of compact development	Feature name	Description
	Distance to center	Distance to neighborhood with highest POI density
Destination accessibility	Distance to subcenter Least distance to any of the 10 neighborhoods wit est POI density	
	POI density index	Local POI density for offices, schools, kindergarten, and universities
Density	Population density	Population density of the built-up area
Diversity	Land use	Share of mix-use areas
Design	Car-friendliness index	Provision of expressway kilometers per capita
Design	Walkability index	Intersection density in the built-up area
Distance to transit	Transit accessibility index	Gravity model-based index describing the average spatio- temporal transit accessibility of a neighborhood

Table 2: Built environment characteristics. Overview of all built environment characteristics considered in

Category	Variable name	Description
	Income	Average household income
Socio-demographics	Household size	Average number of persons living in a household
Socio-demographics	Age	Average age of adult (>18 years) residents
	Higher education	Share of people older than 25 with university degree
	Car ownership	Average number of private & company cars per household
	Bike ownership	Average number of bicycles owned per person
	Driving license	Average share of adults (>18 years) with driving license
Proxies for travel-related attitudes	Transit subscription	Average share of people with monthly transit subscription (incl. children and people with disabilities with free ride tickets)
	Political preferences	Electoral share of the Green party in constituencies intersecting the neighborhood in the last regional elections

Appendix

Emission factors to convert travel distance to CO₂ emissions

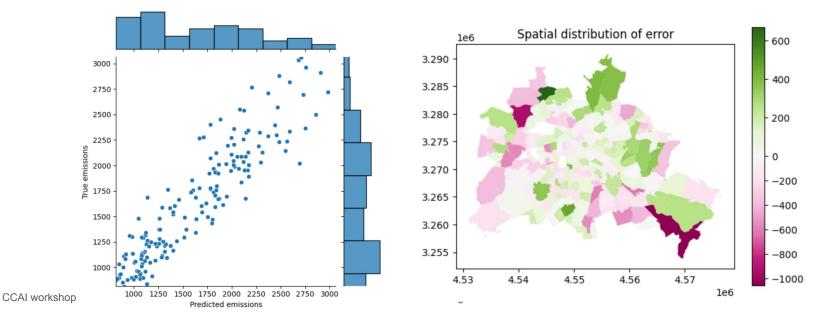
Mode	Emissions [g CO ₂ /pkm]
Car (ICE)	162
Moped (ICE)	70
Transit	65
Bike	20
Foot	0

Table 2: Emission factors of transport modes. Central estimates of life-cycle greenhouse gas emissions of urban transport modes per person km according to the International Transport Forum (ITF) [2]. Emissions factors are expressed CO_2 equivalents and have partially been aggregated to match transport modes considered in this study (e.g. bus & metro \rightarrow transit). Life-cycle emissions include a vehicle, fuel, and infrastructure component as well as operational services. ICE refers to internal combustion engine.

Appendix

Explanatory power of covariates with XGBoost regressor

- 5-fold random cross-validation with 1000 tree estimators, a tree depth of 6, and a learning rate of 0.01
- Coefficient of determination, R², between 0.8 and 0.85 depending built environment characterization and inclusion of transport means ownership attributes



Appendix Causal inference: Double machine learning

Estimate causal effects from observational data

- Randomized control trial (RCT) is not suitable
- Confounding effects (treatment assignment is not randomized, leading to biased estimates)
- High-dimensional covariates (functional form unknown or non-parametric)
- Multiple, continuous treatment dimensions
- Stage 1: Debiasing / estimation of nuisance parameters
 - Predicting the outcome from the controls -> outcome residuals
 - Predicting the treatment from the controls -> treatment residuals
- Stage 2: Estimation of heterogeneous treatment effect
 - Predicting the outcome residuals from the treatment residuals and controls

MODEL • XGBoost for nuisance models, CausalForest for final model (EconML CausalForestDML implementation)

GOAL

WHY

HOW

Nachtigall et al.