
On the Relationship between Skill Neurons and Robustness in Prompt Tuning

Abstract

This paper investigates the robustness of RoBERTa and T5 after Prompt Tuning against Adversarial GLUE with the help of Skill Neurons. The following novel contributions are made.

- 1. Prompt Tuning does not produce more robust models than model tuning
- 2. Skill Neurons can be found in other models than RoBERTa (like T5)
- 3. Skill Neurons suggest to be important for model robustness

Methods

Repeat 5 times for each model-dataset combination

- **1. Prompt Tuning** $(\mathbf{P}, \mathbf{X}) = [\mathbf{p}_1, \dots, \mathbf{p}_p, \mathbf{x}_1, \dots, \mathbf{x}_s]$, with $(\mathbf{P}, \mathbf{X}) \in \mathbb{R}^{(p+s) \times h}$ 2. Skill Neurons
 - **1. Baseline activations** $a_{bsl}(\mathcal{N}, \mathbf{p}_i) = \frac{1}{|D_{train}|} \sum_{\mathbf{X}_i \in D_i} a(\mathcal{N}, \mathbf{p}_i, (\mathbf{P}, \mathbf{X}_i))$
 - 2. Neuron accuracies $\operatorname{Acc}(\mathcal{N}, \mathbf{p}_i) = \frac{\sum_{(\mathbf{X}_i, y_i) \in D_{\operatorname{dev}}} \mathbf{1}_{[\mathbf{1}_{[a(\mathcal{N}, \mathbf{p}_i, (\mathbf{P}, \mathbf{X}_i)) > a_{\operatorname{bsl}}(\mathcal{N}, \mathbf{p}_i)]} = y_i]}{|D_{\operatorname{dev}}|}$
 - 3. Neuron predictivities $Pred(\mathcal{N}, \mathbf{p}_i) = max (Acc(\mathcal{N}, \mathbf{p}_i), 1 Acc(\mathcal{N}, \mathbf{p}_i))$

Maximum Aggregation of neuron predictivities $\operatorname{Pred}(\mathcal{N}) = \frac{1}{k} \sum_{\mathbf{p}_i \in \mathcal{P}_i} \max_{\mathbf{p}_j \in \mathbf{P}_i} \operatorname{Pred}(\mathcal{N}, \mathbf{p}_j)$

Analyses on Robustness, Transferability of Prompts and Predictivity, Taskspecificity and model importance of Skill Neurons

Experiments

Models RoBERTa Tasks **Ethical Judement** Paraphrase Identification Natural Language Inference QNLI, AdvQNLI Sentiment Analysis

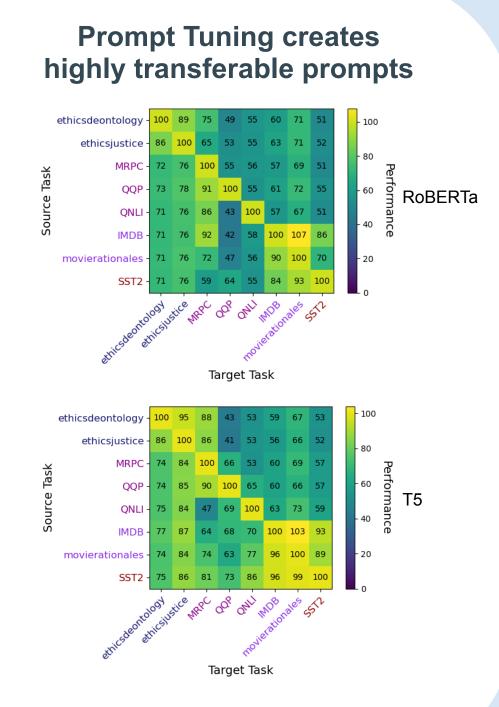
Datasets

EthicsDeontology, EthicsJustice MRPC, QQP, AdvQQP IMDB, movierationales, SST2, AdvSST2

T5

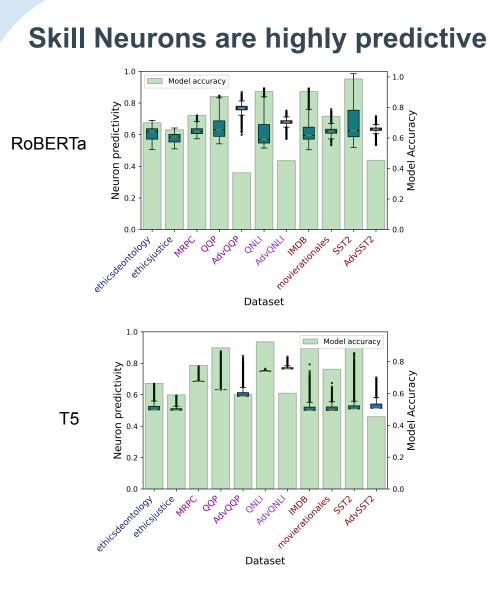
Leon Ackermann, Xenia Ohmer

Osnabrück University

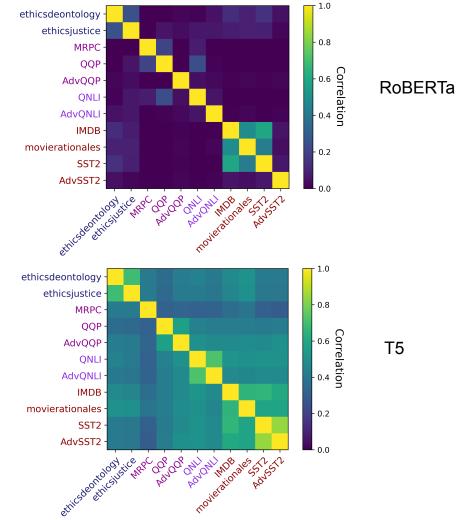


Results - Prompt Tuning

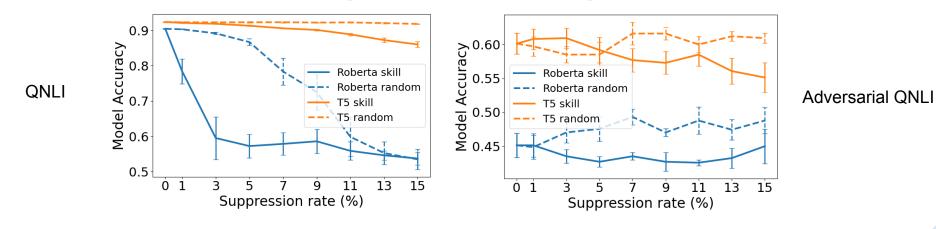
T5 is more robust than RoBERTa


Dataset	RoBERTa	T5
ethicsdeontology ethicsjustice	$\begin{array}{c} 69.9 \pm 2.0 \\ 65.4 \pm 1.6 \end{array}$	$\begin{vmatrix} 66.3 \pm 1.6 \\ 59.1 \pm 2.9 \end{vmatrix}$
MRPC QQP AdvQQP	$\begin{vmatrix} 74.8 \pm 5.9 \\ 87.1 \pm 0.2 \\ 37.2 \pm 4.1 \end{vmatrix}$	$\begin{vmatrix} 77.5 \pm 2.6 \\ 88.7 \pm 1.1 \\ 59.2 \pm 8.0 \end{vmatrix}$
QNLI AdvQNLI	$\begin{array}{c c} 90.4 \pm 0.2 \\ 45.1 \pm 3.5 \end{array}$	$\begin{array}{ }92.4 \pm 0.2 \\60.1 \pm 3.1\end{array}$
IMDB movierationales SST2 AdvSST2	$\begin{array}{c} 90.4 \pm 0.3 \\ 74.1 \pm 2.4 \\ 98.7 \pm 2.6 \\ 45.3 \pm 4.5 \end{array}$	

Mean and standard deviation of model's accuracy after Prompt Tuning across five different random seeds


Relative Transferability of Continuous Prompts

Results - Skill Neurons

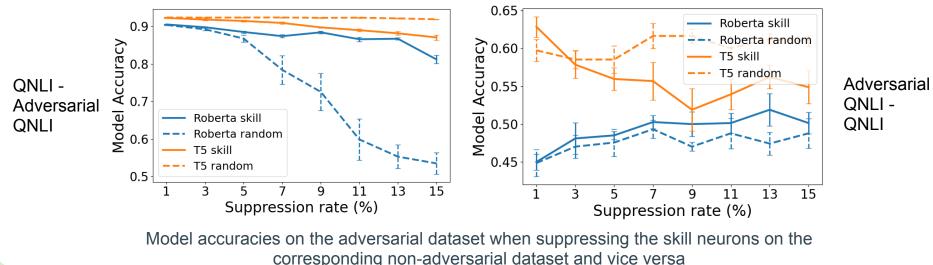

Model Performance (bar) and skill neuron predictivities (box)

Skill Neurons are task specific

Spearman's rank correlation between neuron predictivities

Skill Neuron are important for model performance

Suppressing 1-15% of activations of skill neurons and random neurons



Discussion

Results suggest connection between Skill Neurons and Robustness 1. T5 is more robust than RoBERTa

2. T5's skill neurons from non-adversarial datasets and adversarial datasets show a higher overlap than RoBERTa's

Robustness is higher if skill neurons of non-adversarial and corresponding adversarial dataset show high overlap

Conclusion

- 1. Prompt Tuning is not inherintly more robust than model tuning
- 2. T5 is more robust than RoBERTa against Adversarial GLUE
- 3. Skill Neurons can be found in T5 (in addition to RoBERTa)
- 4. Activation of relevant skill neurons of non-adversarial datasets for adversarial datasets might increase robustness

Limitations

- 1. It cannot be excluded that some Skill Neurons resemble spurious correlations
- 2. Only the encoder of T5 was in scope of study
- 3. The investigated models are relatively small, larger ones might behave differently

Acknowledgements

We would further like to thank Elia Bruni and Michael Rau for helpful discussions. We would like to thank the Universitätsgesellschaft Osnabrueck for sponsoring our participation at the NeurIPS R0-FoMo Workshop.

References

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3045–3059

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and Jie Zhou. On transferability of prompt tuning for natural language processing. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3949-3969

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li. Finding skill neurons in pre-trained transformer-based language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language *Processing*, pages 11132–11152

Full Paper

