

Physics-Informed Calibration of Aeromagnetic Compensation in Magnetic Navigation Systems using Liquid Time-Constant Networks

Favour Nerrise^{1,2}, Sosa Sosanya¹, Patrick Neary¹

¹Department of Electrical Engineering, Stanford University ²SandboxAQ fnerrise@stanford.edu

Mag 4, 5 Mag 3

Magnetic Anomaly Navigation (MagNav)

- MagNav is a proven, viable **fallback to GPS**^[1,2]
- Airborne MagNav estimates positioning by correlating **aircraft** magnetometer readings to anomaly maps of the Earths crustal magnetic field.
- Airborne MagNav is **highly resistant** to:
 - jamming/spoofing attacks
 - atmospheric weather conditions •
- Stochastic and deterministic effects from external magnetic fields hinder classical **calibration** attempts^[3].

Fig 1. Magnetic Anomaly Map

Mag 1 **Tail Stinger**

Aim: remove aircraft magnetic field from total magnetic field (**i.e., aeromagnetic** compensation) to derive a clean signal for MagNav.

Features: compensated magnetometer measurements, aircraft positional+INS measurements, & electrical measurements.

Dataset & Setup

Dataset: United States Air Force-MIT Signal Enhancement for Magnetic Navigation Challenge Dataset [open-source]^{[3].}

Flux B Flux C, D Flux A

Fig 4. MagNav Challenge magnetometer locations

Results

- LTC demonstrates ~58% deduction in compensation error [RMSE].
- LTC-CfC shows ~64% reduction compensation error vs. classical model.

Motivation

• Inertial navigation position measurements drift over time due to accumulated estimated errors.

Fig 2. Example Flight Trajectory vs. INS Trajectory with Drift

MagNav measurements exhibit **nonlinear**, **spatiotemporal dynamics** that are **difficult** to model due to **noisy**, **corrupted magnetic fields**.

Q:

How can we capture complex, nonlinear, spatiotemporal dynamics of airborne MagNav from a weak, noisy signal?

Closed-Form Continuous Liquid Time-Constant Networks (LTC-CfC)

- **LTCs**, a type of RNN, use **ODE-solvers** for high-dim, sequential tasks.
- LTCs uncover **nonlinear dynamics** using **neural circuit policies**^[4] to solve the system:

 $\frac{d\mathbf{x}}{dt} = w_{\tau} + f(\mathbf{x}, \mathbf{I}, \theta) \mathbf{x}(t) + Af(\mathbf{x}, \mathbf{I}, \theta)$

• A CfC delivers higher efficiency and achieves faster, adaptive, causal, &

Model	Flt1003 [RMSE nT]	Flt1007 [RMSE nT]
Tolles-Lawson (baseline)	58.85	45.13
LSTM	41.79	42.18
MLP	30.47	26.23
CNN	26.05	30.56
LTC	20.31	22.89
LTC-CfC (ours)	18.20	19.14

Tab 1. Model comparison of aerocompensation calibration error (RMSE nT) for flights 1003 and 1007.

Conclusion & Broader Impact

Novel, physics-informed model that models higher-order, nonlinear dynamics in aeromagnetic compensation.

Offers magnetic effects corrections, LTCs with ODE-solvers/closedform & additive compensation correction for MagNav signals.

continuous-time solutions without an ODE-solver^[5].

References

[1] Aaron J. Canciani. Magnetic navigation on an f-16 aircraft using online calibration. IEEE Transactions on Aerospace and Electronic Systems, 58(1):420–434, 2022. [2] Aaron Canciani and John Raquet. Airborne magnetic anomaly navigation. IEEE Transactions on aerospace and electronic systems, 53(1):67–80, 2017 [3] Paul Leliak. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft. IRE Transactions on Aerospace and Navigational Electronics, (3): 95–105, 1961. [4] Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela Rus, and Radu Grosu. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2(10):642-652, 202. [5] Ramin Hasani, Mathias Lechner, Alexander Amini, Lucas Liebenwein, Aaron Ray, Max Tschaikowski, Gerald

Teschl, and Daniela Rus. Closed-form continuous-time neural networks. Nature Machine Intelligence, 4(11):992–1003, 2022.

Acknowledgement

This work is supported by SandboxAQ where F.N. is participating in a Ph.D. Residency program.

Contact

favour.nerrise@sandboxaq.com @fnerrise

Join Us

sandboxaq.com/careers

careers@sandboxaq.com

sandboxaq.com/company/residencies

