
DFT Hamiltonian Neural Network Training 

with Semi-supervised Learning

Introduction

• Previous neural network training methods required an extensive number 

of DFT simulations to obtain the ground truth (Hamiltonians). 

• Conversely, when working with limited training data, deep learning 

models often exhibit increased errors in predicting Hamiltonians and 

band structures for testing data. 

• This phenomenon carries the potential risk of yielding inaccurate physical 

interpretations, including the emergence of unphysical branches within 

band structures. 

• To address this challenge, we introduce a novel deep learning-based 

method for calculating DFT Hamiltonians, specifically designed to 

generate accurate results with limited training data.
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• We utilize mean-squared error loss for both supervised and 

unsupervised loss.

• Total loss includes the both losses with a hyperparameter α, which 

controls effects of unlabeled data for training.

• When dealing with a limited amount of training data, there exists a risk of 

obtaining distorted results in the subsequent physical analysis.

• To address this challenge, we introduce a framework that mitigates the 

limitations arising from insufficient training data. 

• We achieve this by incorporating semi-supervised learning techniques 

into neural network training. 

• There are scenarios where access to extensive simulations or 

conducting experiments can be limited due to various constraints, 

including resource limitations or high costs. 

• In such situations, it becomes imperative to achieve reliable and 

meaningful results using a limited amount of training data. 

• Our framework offers a versatile solution that can be applied effectively 

to a wide range of examples in these circumstances.

• Limited labeled data leads to inaccurate band structures; our approach 

with unlabeled data in neural network training corrects this.

• More unlabeled data reduces Hamiltonian error (Figure a). 

• Reducing initial step 𝐼 and increasing training weight α gradually improve 

accuracy (Figure b and c).

• Our framework has been applied to the state-of-the-art model, DeepH-

E3, which utilizes a message passing neural network.

• 𝑣𝑖 is vertex 𝑖 representing an atom, 𝑒𝑖𝑗 is the edge between vertices 𝑖

and 𝑗 indicating the bond, 𝐴𝑖 is atomic number, 𝑟𝑖𝑗 is the distance, Ƹ𝑟𝑖𝑗 is 

the angle, 𝐻𝑖𝑗 is the Hamiltonian element, and 𝑡 is the number of update.

• DFT's Hamiltonian Message-passing Neural Networks streamline atomic 

structure analysis, offering an efficient alternative to traditional methods.

• Data preparation: atomic structure creation (Vienna ab-initio simulation 

package), DFT Hamiltonian calculation (OpenMX software), and 

Hamiltonian matrix transformation (Wigner D-matrix). 

• Generated data for MoS2, Bi2Te3, HfO2, InGaAs.
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