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Abstract

Finding symmetry breaking is essential for understanding the funda-
mental changes in the behaviors and properties of physical systems, from
microscopic particle interactions to macroscopic phenomena like fluid dy-
namics and cosmic structures. Relaxed group convolution emerges
as a solution for instances when physical systems without perfect sym-
metries and perfectly equivariant models are restrictive. In this paper,
we provide both theoretical and empirical evidence that this flexible con-
volution technique allows the model to maintain the highest level
of equivariance that is consistent with data and discover the sub-
tle symmetry-breaking factors in various physical systems. We employ
various relaxed group convolution architectures to uncover symmetry-
breaking factors in different physical systems, including the phase tran-
sition of crystal structure and the isotropy and homogeneity
breaking in turbulence.

Relaxed Group Convolution
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Proposition

Consider a relaxed group convolution neural network where the relaxed
weights are initialized to be identical to maintain G-equivariance. If it is
trained to map an input X to the output Y , its relaxed weights will learn
to be distinct across group elements in G during training in a way such
that it is equivariant to G ∩ Stab(X) ∩ Stab(Y ), which is the intersection
of the stabilizers of the input and the output and G.

Simple 2D Square-Rectangle Example

• The relaxed weights only deviate from being equal only when the symme-
tries of the input and the output are lower than that of the model.

• This suggests that by analyzing the relaxed weights post-training, we can
determine which symmetries are broken.

• The group transformations with the same relaxed weights as those of the
identity element stabilize both the input and the output.

Figure: Visualization of tasks and corresponding relaxed weights after training. A 3-layer
C4-relaxed group convolution network with L = 1 is trained to perform the following three
tasks: 1) map a square to a square; 2) deform a square into a rectangle; 3) map a square to
a non-symmetric object.

Discover Symmetry Breaking Factors in Phase
Transitions of Crystal Structures

Figure: Visualization of BaTiO3: As temperature decreases, it undergoes a series of
symmetry-breaking phase transitions, transitioning from a cubic structure to a tetragonal
phase, and eventually to an orthorhombic form.

Figure: Visualization of the relaxed weights of two 3-layer relaxed octahedral group
convolution networks trained to map from the cubic system to the tetragonal system and
the orthorhombic system. The highlighted relaxed weights correspond to the preserved
symmetry operations in these two systems that forms C4v and C2v group respectively.

Discover Isotropy Breaking in Turbulence

Kolmogorov’s Hypothesis states that, at sufficiently high Reynolds num-
bers, the small-scale turbulent motions are statistically isotropic and indepen-
dent of the large-scale structure.

Figure: Left: Model for detecting rotational symmetry. This model breaks down the input
velocity field into multiple scales using Fourier frequency cutoffs. Each scale is then
processed through a distinct relaxed group convolution layer and the sum of the outputs
from these layers is trained to reconstruct the input. Middle: Visualization of scale
separation in energy spectrum. The black line represents the energy spectrum of the
original velocity fields, while the other colored lines correspond to different scales. Right:
Equivariance errors learned by the model. As the wave number gets higher (indicating
smaller eddies), the equivariance error tends to decrease towards zero.

Discover Homogeneity Breaking in Turbulence

Figure: Left: Visualization of a velocity norm field. Middle: Translation equivariance
error along the Y-axis. Right: The visualization of translation relaxed weights. It shows
increased variation in relaxed weights as they approach the boundary areas.


