

Van der Pol-informed Neural Networks for Multi-step-ahead

Forecasting of Extreme Climatic Events

Anurag Dutta¹, Madhurima Panja², Uttam Kumar², Chittaranjan Hens³, Tanujit Chakraborty⁴

RBONNE CENTER FO

¹GCETTS, ²IIIT Bangalore, ³IIIT Hyderabad, India, ⁴Sorbonne University

OVERVIEW: Building Physics-Informed Neural Networks for accurate forecasting of extreme climatic events using a physics-informed differential learning approach for mitigating the impacts of severe climatic disasters.

MOTIVATION:

- Modeling the nonlinear dynamical systems of extreme climatic phenomena is an open scientific challenge.
- Physics-based dynamical systems provides an efficient mechanism for understanding the inherent dynamics of the chaotic systems.
- Machine learning approaches are vital for modeling the long-term system trajectories from a data-centric perspective without particular emphasis on the physical laws governing the system.

CONTRIBUTIONS:

- Modeling the temporal evolution of real-world extreme climatic events by integrating the physical knowledge into the data-driven forecasting mechanism.
- The dynamics of the Van der Pol oscillatory system is infused with the data-centric long-short term memory (LSTM) model using transfer learning and a physicsinformed loss function.
- Enhancing the modeling and forecasting capabilities of the LSTM framework for nonlinear dynamical systems.
- Reducing the computational complexity data and requirements of the LSTM model

METHODOLOGY:

VPINN leverages the

FORECASTING: BENCHMARK COMPARISON

Model		SES	LSTM	RCN	Prophet	Bi-LSTM	NBeats	VPINN	IMP		MCB plot for RMSE metric						
Metric		RMSE MAE	RMSE MAE	RMSE MAE	RMSE MAE	RMSE MAE	RMSE MAE	RMSE MAE	RMSE								†
Turkey	ST	0.555 0.506	2.912 2.014	0.576 0.381	0.576 0.432	3.630 3.522	0.573 0.431	0.514 0.360	82.3%	~ -							
		(0.00) (0.00)	(0.08) (0.02)	(0.12) (0.10)	(0.10) (0.01)	(0.10) (0.12)	(0.01) (0.10)	(0.01) (0.01)							+	1	
SW	LT	1.150 1.108	2.752 1.879	1.332 0.617	0.553 0.389	3.544 3.429	0.552 0.504	0.446 0.323	83 7%	<mark>ک</mark> ۵ –				Ť			Ť
		(0.00) (0.00)	(0.01) (0.01)	(0.99) (0.52)	(0.08) (0.05)	(0.08) (0.15)	(0.08) (0.15)	(0.01) (0.01)		a a							
Delhi	ST	14.75 14.52	8.026 6.285	32.95 29.83	6.079 4.872	7.982 6.693	5.712 4.648	5.604 4.863	30.2%	- ag				4	Ť		+
		(0.00) (0.00)	(0.83) (0.89)	(5.31) (6.17)	(2.72) (1.10)	(0.81) (1.23)	(1.00) (0.67)	(0.28) (0.39)		₹, _			+				
WS	LT	8.040 7.532	6.748 4.812	36.88 26.38	6.726 5.258	6.769 5.167	6.749 4.914	6.673 4.369	1.11%			T			+	•	
		(0.00) (0.00)	(0.92) (0.85)	(8.92) (5.38)	(1.21) (0.97)	(1.00) (0.95)	(1.01) (0.45)	(0.21) (0.20)		- co				•			
El Niño	ST	18.08 18.06	22.38 22.22	5.352 4.182	2.346 1.924	23.32 23.26	2.934 2.669	7.471 7.208	66.6%		Ť	•	T T				
		(0.00) (0.00)	(1.05) (1.61)	(2.01) (1.28)	(1.00) (0.99)	(1.27) (0.95)	(0.18) (0.98)	(0.43) (0.48)	001070	~ - 10							
SST	LT	22.65 22.55	19.82 19.69	15.15 12.19	7.201 6.841	21.57 21.44	7.273 6.385	6.016 5.426	69.6%		+	1	÷				
		(0.00) (0.00)	(4.64) (1.45)	(3.99) (2.31)	(1.27) (1.56)	(1.98) (1.46)	(1.72) (0.55)	(0.34) (0.35)		← -							
Madrid Humidity	ST LT	63.09 61.01	46.47 44.28	26.98 24.49	28.52 25.79	48.79 46.72	27.73 22.61	26.14 22.04	43.7%								
		(0.00) (0.00)	(2.52) (2.47)	(3.01) (9.48)	(2.16) (1.99)	(1.98) (1.37)	(1.99) (2.89)	(0.01) (0.00)		o –	1	1	1	1			1
		67.60 65.84	52.78 50.83	61.90 52.92	34.89 26.89	54.23 52.35	31.64 27.69	35.76 32.75	32.2%		20	20	85	02	8	50	6
		(0.00) (0.00)	(2.89) (1.89)	(1.76) (1.95)	(2.20) (2.09)	(2.10) (2.51)	(1.54) (2.74)	(0.01) (0.01)				Ci.	2	4	5	40	ů,
Philippines	es ST	17.14 16.83	25.01 24.68	18.78 16.78	14.57 13.98	26.06 25.76	13.95 13.56	13.89 13.29	44.4%		Ę	ats	het	Z	S U	Σ	M
		(0.00) (0.00)	(1.74) (1.85)	(2.97) (1.89)	(1.78) (1.09)	(1.30) (1.99)	(2.01) (2.00)	(0.99) (2.30)				Be	ldo	Ř	0	N.	, v
Temp	LT	16.57 16.12	26.04 25.70	17.05 15.16	18.25 17.86	26.46 26.13	20.44 19.69	12.94 12.56	50.3%			2	٩				ä
		(0.00) (0.00)	(1.92) (2.08)	(2.08) (2.01)	(1.99) (0.18)	(2.10) (2.23)	(2.27) (1.92)	(1.25) (2.01)									

Fig: Visualization of the multiple comparison with the best (MCB) analysis w.r.t. RMSE. The Y-axis of the plot shows the average rank and the X-axis represents corresponding model.

CONCLUSIONS

- VPINN enhances forecastability through a combination of transfer learning and a physics-informed loss function.
- The modeling capabilities of the VPINN framework show promise for developing and refining additional physics-guided forecasters capable of handling the complex geophysical turbulence of extreme climatic events.

Fig: RMSE (error metric) values of the proposed model and the state-of-the-art for Turkey Seismic Waves dataset at each forecast steps.

Table :

lighted).

Paper Download