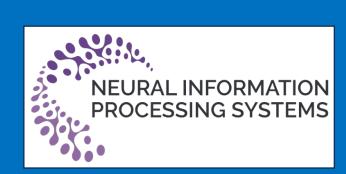


Spoken Language Understanding Evaluations for Home-Based Basic Math Learning



MATH-AI

Eda Okur, Saurav Sahay, Lama Nachman Intel Labs, USA

{eda.okur, saurav.sahay, lama.nachman}@intel.com

INTRODUCTION

- We implement a multimodal task-oriented dialogue system to support play-based learning experiences at home, guiding kids to master basic math concepts.
- This work explores the Spoken Language Understanding (SLU) pipeline of a dialogue system developed for Kid Space, with cascading Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU) components evaluated on our home deployment data with kids going through gamified math learning activities.
- We validate the advantages of a multi-task architecture for NLU and experiment with a diverse set of pretrained language representations for Intent Recognition and Entity Extraction tasks in the math learning domain.
- To recognize kids' speech in realistic home environments, we investigate several ASR systems, including Google Cloud and open-source Whisper solutions with varying model sizes.
- We evaluate the SLU pipeline by testing our best-performing NLU models on noisy ASR output to inspect the challenges of understanding children in authentic homes.

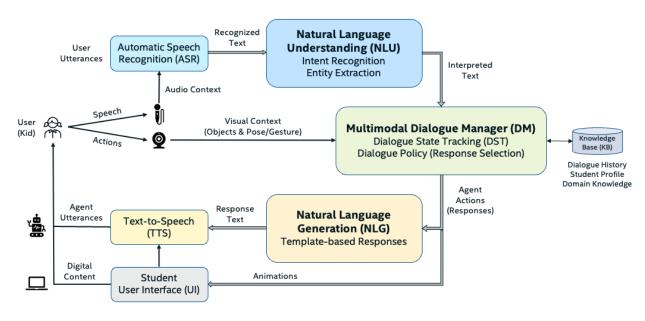


Fig 1: Multimodal Dialogue System Pipeline

METHODS

Datasets

- POC data, manually constructed based on UX studies and partially adopted from our previous school data [1], is used to train and cross-validate various NLU models.

 | NLU Data Statistic # Intents Types Total # Utterances
- Recent home deployment data collected from 12 kids (ages 7-8) experiencing our multimodal math learning system at homes.
- Manually transcribed children's utterances in deployment data [2] are used to test our best NLU models trained on POC data.
- Evaluated multiple ASR engines on audio recordings to compute WER and assess ASR model performances on kids' speech.

Table 1: Kid Space Home POC & Deployment Data Stats

NLU Data Statistics	POC	Deployment
# Intents Types	13	12
Total # Utterances	6,245	733
# Entity Types	3	3
Total # Entities	5,023	497
Min # Utterances per Intent	105	1
Max # Utterances per Intent	1,051	270
Avg # Utterances per Intent	480.4	61.1
Min # Tokens per Utterance	1	1
Max # Tokens per Utterance	40	33
Avg # Tokens per Utterance	4.96	2.88
# Unique Tokens (Vocab Size)	1,992	362
Total # Tokens	30,976	2,113

- We have relatively generic intents (state-name, affirm, deny, repeat, out-of-scope) as well as highly domain-specific (answer-flowers/valid/others, state-color, had-fun-a-lot, end-game) or math-related intents (state-number, still-counting).
- Extracted entities are activity-specific (name, color) and math-related (number).

NLU Models

- We investigate several NLU models for Intent Recognition and Entity Extraction tasks by customizing open-source **Rasa** framework [3] as a backbone.
- Baseline approach is inspired by **StarSpace**, a supervised embedding-based model maximizing the similarity between utterances and intents in shared vector space.
 - We enrich this baseline classifier by incorporating **SpaCy** pre-trained embeddings as additional features. **CRF** Entity Extractor is also part of this baseline NLU.
- We explore the advantages of a more recent Dual Intent and Entity Transformer (DIET) model [4], a multi-task architecture for joint Intent and Entity Recognition.
 - To observe the net benefits of DIET, we first pass the identical SpaCy embed-dings used in our baseline (StarSpace) as dense features to DIET.
 - We adopt DIET with pretrained **BERT**, **RoBERTa**, **DistilBERT** word embeddings, as well as **ConveRT** [5] and **LaBSE** sentence embeddings to inspect the effects of these autoencoding-based language representations on NLU.
 - We also evaluate pretrained embeddings from models using autoregressive training such as **XLNet**, **GPT-2**, and **DialoGPT** on top of DIET.
 - Next, we explore recently-proposed math-language representations pretrained on math corpora, such as MathBERT, Math-aware-BERT, Math-aware-RoBERTa.

ASR Models

- We explore 3 main speech recognizers for our math learning application at home:
 - **Rockhopper** ASR is the baseline local approach. Its acoustic models rely on Kaldi generated resources trained on default adult speech data. Its language models finetuned with limited in-domain kids' utterances from previous school usages.
 - **Google Cloud** ASR is a commercial solution providing high-quality speech recognition service but requiring connectivity and payment, which cannot be adapted or fine-tuned as Rockhopper.
 - Whisper ASR [6] is an open-source adjustable solution that can run locally, achieving new state-of-the-art (SOTA) results. We inspect four configurations of varying model sizes (i.e., tiny, base, small, and medium).

EXPERIMENTAL RESULTS

NLU Model Selection

- We train Intent and Entity Classification models and cross-validate them over the POC dataset to select the best-performing NLU architectures for Kid Space Home.
- Compared to baseline (StarSpace), we gain 2% F1 for intents and 1% F1 for entities with DIET architecture.
- For language representations, BERT family of embeddings achieves higher F1 than the GPT family of embeddings.
- No benefits of employing math-specific representations as all such models achieve worse results than DIET+BERT.
- We select DIET+ConveRT as final model architecture for our NLU tasks at home.

NLU Evaluation on Deployment Data

Table 3: NLU Evaluation Results in F1-scores (%) for DIET+ConveRT Models Trained on Home POC Data & Tested on Home Deployment Data

	Intent Detection			Entity Extraction			
Activity	POC	Deploy	Δ	POC	Deploy	Δ	
Intro (Meet & Greet)	99.92	97.46	-2.46	99.32	97.55	-1.77	
Warm-up Game	98.91	93.54	-5.37	-	-	-	
Training Game	98.48	94.27	-4.21	99.92	99.91	-0.01	
Learning Game	99.02	94.37	-4.65	99.95	99.50	-0.45	
Closure (Dance)	98.91	98.82	-0.09	-	-	-	
All Activities	98.92	94.36	-4.56	99.66	99.42	-0.24	

Table 2: NLU Model Selection Results in F1-scores (%) Evaluated on Home POC Data (10-fold CV)

Evaluated of Fior					
NLU Model	Intent Detection	Entity Extraction			
StarSpace+SpaCy	92.83 ± 0.28	97.14 ± 0.21			
DIET+SpaCy	94.40 ± 0.08	98.45 ± 0.11			
DIET+BERT	97.37 ± 0.26	99.29 ± 0.01			
DIET+RoBERTa	95.62 ± 0.21	99.17 ± 0.11			
DIET+DistilBERT	97.52 ± 0.23	99.54 ± 0.11			
DIET+ConveRT	98.92 ± 0.28	99.66 ± 0.02			
DIET+LaBSE	98.31 ± 0.21	99.78 ± 0.03			
DIET+XLNet	95.11 ± 0.22	98.44 ± 0.13			
DIET+GPT-2	95.46 ± 0.30	99.07 ± 0.27			
DIET+DialoGPT	96.12 ± 0.52	99.00 ± 0.11			
DIET+MathBERT-base	94.67 ± 0.25	98.15 ± 0.20			
DIET+MathBERT-custom	94.73 ± 0.37	97.54 ± 0.28			
DIET+Math-aware-BERT	96.07 ± 0.18	99.00 ± 0.18			
DIET+Math-aware-RoBERTa	94.31±0.19	98.81 ± 0.20			

- We evaluate our NLU module on Kid Space Home Deployment data collected at authentic homes over 12 sessions with 12 kids, where each child goes through 5 activities within a session.
- We observe F1% drops (Δ) of 4.6 for intents and 0.3 for entities when our best DIET+ConveRT models tested on home deployment data.
- We witness distributional and utterance-length differences between POC & deployment datasets.

Remove Num2Word LC & LC & RP NW & LC & RP &

• Real-world data is always noisier than anticipated as these utterances come from younger kids playing math games in dynamic conditions.

ASR Model Evaluation

Table 4: ASR Model Results: Average Word Error Rates (WER) for Child Speech at Kid Space Home Deployment Data

 Obtained WER before and after standard pre-processing steps (lowercase, punctuation removal) and application-specific filtering (num2word, cleaning).

ASR Model	Output	(LC)	Punct (RP)	(NW)	RP	& NW	Clean	NW & Clea
Rockhopper	0.939	0.919	0.924	0.937	0.886	0.884	0.937	0.884
Google Cloud	0.829	0.798	0.775	0.763	0.695	0.602	0.763	0.602
Whisper-tiny	1.055	1.027	1.002	1.027	0.964	0.919	0.983	0.880
Whisper-base	1.042	1.020	0.971	0.985	0.946	0.856	0.622	0.500
Whisper-small	0.834	0.804	0.760	0.756	0.720	0.621	0.537	0.405
Whisper-medium	0.905	0.870	0.824	0.814	0.785	0.675	0.522	0.384

- Relatively high error rates can be attributed to the characteristics of recordings (incidental voice and phrases), very short utterances (binary yes/no answers, stating numbers) & recognizing kids' speech.
- Still, the comparative results indicate that Whisper ASR solutions perform better on kids, and we can benefit from increasing the model size from tiny to small, while small to medium is close.

SLU Pipeline Evaluation

Table 5: SLU Pipeline Evaluation Results in F1-scores (%) for ASR+NLU and VAD-Adjusted ASR+NLU on Home Deployment Data

	Inte	nt Detection	Entity Extraction		
ASR Model	F1	Adjusted-F1	F1	Adjusted-F1	
Rockhopper	37.3	15.7	84.4	35.5	
Google Cloud	79.1	40.3	97.0	49.4	
Whisper-tiny	58.1	56.6	94.0	89.1	
Whisper-base	64.9	60.3	95.9	91.0	
Whisper-small	72.1	68.0	96.5	91.6	
Whisper-medium	76.7	73.3	98.2	93.8	

- For SLU pipeline evaluation, we test our bestperforming NLU models (DIET+ConveRT) on noisy ASR output.
- When VAD-adjusted F1-scores are compared, NLU on Whisper ASR performs relatively higher than Google and Rockhopper (aligned with the WER results).
- Increasing the ASR model size from small to medium could be worth the trouble for Whisper.
- When VAD-ASR errors propagate into pipeline, F1 drops from 94.2% with NLU to 73.1% with VAD-ASR+NLU.

Error Analysis

Table 6: NLU Error Analysis: Intent Recognition Error Samples from Home Deployment Data

Table 7: SLU Pipeline (ASR+NLU): Intent Recognition Error Samples from Home Deployment Data

Sample Kid Utterance	Intent	Prediction
Pepper.	state-name	answer-valid
Wow, that's a lot of red flowers.	out-of-scope	answer-flowers
None.	state-number	deny
Nothing.	state-number	deny
Yeah. Can we have some carrots?	affirm	out-of-scope
Okay, Do your magic.	affirm	out-of-scope
Maybe tomorrow.	affirm	out-of-scope
He's a bear.	out-of-scope	answer-valid
I like the idea of a bear	out-of-scope	answer-valid
Oh, 46? Okay.	still-counting	state-number
94. Okay.	still-counting	state-number
Now we have mountains.	out-of-scope	answer-valid
A pond?	out-of-scope	answer-valid
Sorry, I didn't understand it. Uh, five tens.	state-number	still-counting
Ah this is 70, 7.	state-number	still-counting

Human Transcript	ASR Output	ASR Model	Intent	Prediction
Six.	thanks	Rockhopper	state-number	thank
fifteen	if he	Rockhopper	state-number	out-of-scope
fifteen	Mickey	Google Cloud	state-number	state-name
Five.	bye	Google Cloud	state-number	goodbye
Blue.	Blair.	Whisper-base	state-color	state-name
twenty	Plenty.	Whisper-base	state-number	had-fun-a-lo
A lot.	Oh, la.	Whisper-base	had-fun-a-lot	out-of-scope
A lot.	Oh, wow.	Whisper-small	had-fun-a-lot	out-of-scope
Two.	you	Whisper-small	state-number	out-of-scope
Four.	I'm going to see this floor.	Whisper-small	state-number	out-of-scope
twenty	Swamy?	Whisper-medium	state-number	state-name
Eight.	E.	Whisper-medium	state-number	out-of-scope

CONCLUSION

- This study investigates a modular SLU pipeline for kids with cascading ASR and NLU modules, evaluated on our first home deployment data with 12 kids at individual homes.
- For NLU, we examine the advantages of a multi-task architecture & experiment with numerous pretrained language representations for Intent Recognition and Entity Extraction tasks.
- For ASR, we inspect the WER with several solutions that are either low-power and local (Rockhopper), commercial (Google Cloud), or open-source (Whisper) with varying model sizes and conclude that Whisper-medium outperforms the rest on kids' speech at authentic homes.

ELECTED REFERENCES

[1] Okur, E., Sahay, S., Fuentes Alba, R., and Nachman, L. (2022). End-to-end evaluation of a spoken dialogue system for learning basic mathematics. Proceedings of the 1st Workshop on Mathematical Natural Language Processing (MathNLP) FMNLP 2022

Workshop on Mathematical Natural Language Processing (MathNLP), EMNLP 2022.
[2] Okur, E., Sahay, S., Fuentes Alba, R., and Nachman, L. (2022). Inspecting Spoken Language Understanding from Kids for Basic Math Learning at Home. Proceedings of the 18th

Workshop on Innovative Use of NLP for Building Educational Applications (BEA), ACL 2023.
[3] Bocklisch, T., Faulkner, J., Pawlowski, N., and Nichol, A. (2017). Rasa: Open source language understanding and dialogue management. Conversational AI Workshop, NIPS 2017.
[4] Bunk, T., Varshneya, D., Vlasov, V., and Nichol, A. (2020). DIET: lightweight language understanding for dialogue systems. CoRR, abs/2004.09936.

[5] Henderson, M., Casanueva, I., Mrkšić, N., Su, P.-H., Wen, T.-H., and Vulić, I. (2020). ConveRT: Efficient and accurate conversational representations from transformers. Findings of the Association for Computational Linguistics, EMNLP 2020.

[6] Radford, A., Kim, J.W., Xu, T., Brockman, G., Mcleavey, C., and Sutskever, I. (2023). Robust Speech Recognition via Large-Scale Weak Supervision. Proceedings of the 40th International Conference on Machine Learning (ICML 2023).