# Vertical Al-driven Materials Scientific Discovery

#### Symbolic Regression for Scientific Discovery

Learning an explicit symbolic expression (rather than black-box neural net) from data.

Given a dataset  $\mathcal{D} = (x_1, y_1), \dots, (x_n, y_n)$   $(x_i \in \mathbb{R}^m \text{ and } y_i \in \mathbb{R})$  and a loss function  $\mathcal{L}$ . The objective of symbolic regression is to search for the optimal symbolic expression  $\phi^*$  within the space of all candidate expressions  $\Pi$  that minimizes the average loss:

$$\phi^* = \arg\min_{\phi \in \Pi} \frac{1}{n} \sum_{\{i=1\}}^n \mathcal{L}(x_i, y_i)$$

#### **Current Challenges:**

- Incredibly difficult because of the large search space of all possible expressions

- Current methods are too slow to find expressions with *Multiple variables*.

- We propose to use "*Control Variable Experiments*" (a classical scientific approach) to *expedites* scientific machine learning.

#### Motivation: Control Variable Experiments

Can you guess which equation  $y = f(x_1, x_2, x_3)$  generate the data shown in the left table?

| X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Y    | How about if I only ask you to look into these rows? |
|----------------|----------------|----------------|------|------------------------------------------------------|
| 2.5            | 1.0            | 9.5            | 12   | $y = x_1 + x_3$                                      |
| 5.8            | 1.0            | 7.2            | 13   |                                                      |
| 1.8            | 1.0            | 3.2            | 5    |                                                      |
| 4.2            | -1.0           | 2.2            | -2   | How about these rows?                                |
| 9.7            | -1.0           | 1.7            | -8   | $y = -x_1 + x_3?$                                    |
| 3.0            | -1.0           | 4.0            | 1    |                                                      |
| 7.1            | 8.6            | 3.8            | 64.9 |                                                      |
| 2.5            | 2.6            | 3.1            | 9.6  | Maybe the WHOLE equation is:                         |
| 8.9            | 1.1            | 0              | 11.8 | $y = x_2 x_1 + x_3?$                                 |
|                |                |                |      | -                                                    |

 $X_2$  is controlled!

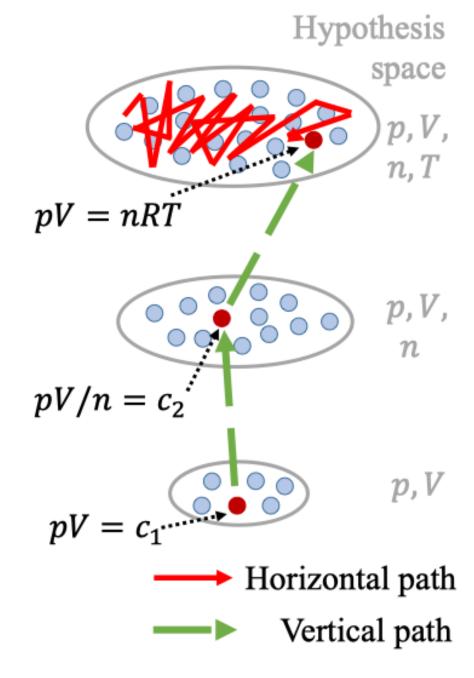
Orange and blue data are two control variable experiment trials. Control variable experiments simplify symbolic regression!

# Vertical Path Scale up Al-driven scientific discovery

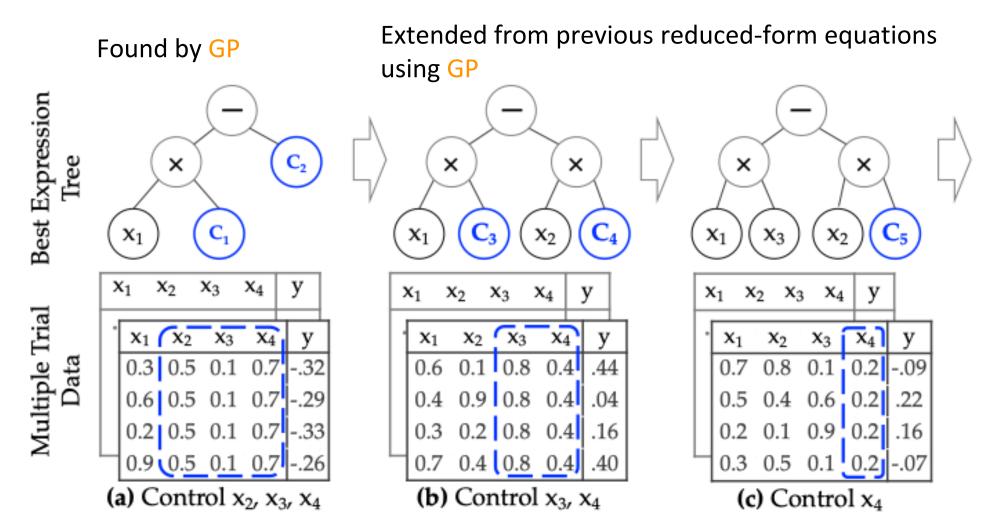
Horizontal way: directly search for the expression in the full hypothesis space

Vertical way: search for the expression incrementally.

- 1. Search the expression only have one input and one output variables (P, V)
- 2. Search the expression only have two inputs and one output variables (P,V,
- 3. Search for the whole expression.



#### Method: Control Variable Genetic Programming



The data are generated from a data Oracle. The constants are identified using BFGS optimizer on batches of data

| Table 2: Ground-truth expression recovery rate. |                 |                 |     |  |  |  |  |  |  |
|-------------------------------------------------|-----------------|-----------------|-----|--|--|--|--|--|--|
| Operator set                                    | Dataset configs | CVGP (ours)     | GP  |  |  |  |  |  |  |
| $\{\texttt{inv},+,-,\times\}$                   |                 | $\mathbf{64\%}$ | 44% |  |  |  |  |  |  |
| $\{\sin,\cos,+,-,	imes\}$                       | (2,1,1)         | <b>46</b> %     | 22% |  |  |  |  |  |  |
| $\{\sin, \cos, inv, +, -, \times\}$             |                 | 44%             | 32% |  |  |  |  |  |  |
|                                                 |                 | Y               |     |  |  |  |  |  |  |
|                                                 |                 |                 |     |  |  |  |  |  |  |

Our CVGP finds more correct expressions.



## Experiments

Table 1: Median (50%) and 75%-quantile NMSE values of the symbolic expressions found by all the algorithms on several noisy benchmark datasets. NMSE is normalized mean square errors.

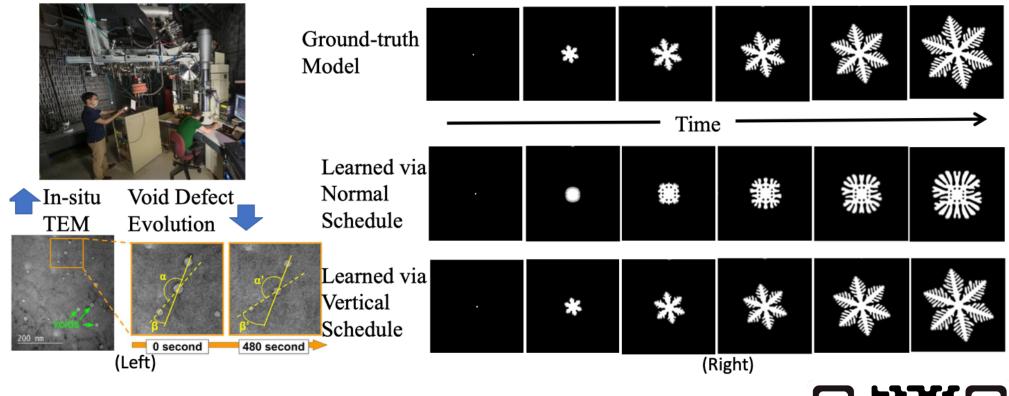
| Dataset                  | et CVGP (ours)                                                          |                                                                    | G     | GP DSR       |       | PQT   |       | VPG    |       | GPMeld |       | Eureqa |               |        |
|--------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-------|--------------|-------|-------|-------|--------|-------|--------|-------|--------|---------------|--------|
| $\operatorname{configs}$ | 50%                                                                     | 75%                                                                | 50%   | 75%          | 50%   | 75%   | 50%   | 75%    | 50%   | 75%    | 50%   | 75%    | 50%           | 75%    |
| (3,2,2)                  | 0.001                                                                   | 0.004                                                              | 0.015 | 0.135        | 1.53  | 43.09 | 0.58  | 1.13   | 0.83  | 1.32   | 1.06  | 2.18   | <1 <b>e-6</b> | <1e-6  |
| $(4,\!4,\!6)$            | 0.008                                                                   | 0.059                                                              | 0.012 | <b>0.054</b> | 1.006 | 1.249 | 1.006 | 2.459  | 1.221 | 2.322  | 1.127 | 2.286  | 1.191         | 6.001  |
| $(5,\!5,\!5)$            | 0.011                                                                   | 0.019                                                              | 0.025 | 0.177        | 1.038 | 8.805 | 1.048 | 4.736  | 1.401 | 38.26  | 1.008 | 1.969  | 0.996         | 6.340  |
| $(5,\!5,\!8)$            | 0.007                                                                   | 0.013                                                              | 0.010 | 0.017        | 1.403 | 5.161 | 1.530 | 41.27  | 4.133 | 27.42  | 1.386 | 8.092  | 1.002         | 1.495  |
| $(6,\!6,\!8)$            | 0.044                                                                   | 0.074                                                              | 0.058 | 0.200        | 1.963 | 90.53 | 4.212 | 8.194  | 4.425 | 22.91  | 15.58 | 269.6  | 1.005         | 1.150  |
| (6, 6, 10)               | 0.012                                                                   | 0.027                                                              | 0.381 | 0.820        | 1.021 | 1.036 | 1.006 | 1.048  | 1.003 | 1.020  | 1.022 | 1.689  | 1.764         | 49.041 |
|                          |                                                                         | (a) Datasets containing operators $\{inv, +, -, \times\}$          |       |              |       |       |       |        |       |        |       |        |               |        |
| (3,2,2)                  | 0.005                                                                   | 0.123                                                              | 0.023 | 0.374        | 0.087 | 0.392 | 0.161 | 0.469  | 0.277 | 0.493  | 0.112 | 0.183  | <1e-6         | <1e-6  |
| $(4,\!4,\!6)$            | 0.028                                                                   | 0.132                                                              | 0.044 | 0.106        | 2.815 | 9.958 | 2.381 | 13.844 | 2.990 | 11.316 | 1.670 | 2.697  | 0.024         | 0.122  |
| $(5,\!5,\!5)$            | 0.086                                                                   | 0.402                                                              | 0.063 | <b>0.232</b> | 2.558 | 3.313 | 2.168 | 2.679  | 1.903 | 2.780  | 1.501 | 2.295  | 0.158         | 0.377  |
| $(5,\!5,\!8)$            | 0.014                                                                   | 0.066                                                              | 0.102 | 0.683        | 2.535 | 2.933 | 2.482 | 2.773  | 2.440 | 3.062  | 2.422 | 3.853  | 0.284         | 0.514  |
| $(6,\!6,\!8)$            | 0.066                                                                   | 0.166                                                              | 0.127 | 0.591        | 0.936 | 1.079 | 0.983 | 1.053  | 0.900 | 1.018  | 0.964 | 1.428  | 0.433         | 1.564  |
| (6, 6, 10)               | 0.104                                                                   | 0.177                                                              | 0.159 | 0.230        | 6.121 | 16.32 | 5.750 | 16.29  | 3.857 | 19.82  | 7.393 | 21.709 | 0.910         | 1.927  |
|                          |                                                                         | (b) Datasets containing operators $\{\sin, \cos, +, -, \times\}$ . |       |              |       |       |       |        |       |        |       |        |               |        |
| (3,2,2)                  | 0.039                                                                   | 0.083                                                              | 0.043 | 0.551        | 0.227 | 7.856 | 0.855 | 2.885  | 0.233 | 0.400  | 0.944 | 1.263  | < 1e-6        | <1e-6  |
| $(4,\!4,\!6)$            | 0.015                                                                   | 0.121                                                              | 0.042 | 0.347        | 1.040 | 1.155 | 1.039 | 1.055  | 1.049 | 1.068  | 1.886 | 4.104  | 0.984         | 1.196  |
| $(5,\!5,\!5)$            | 0.038                                                                   | 0.097                                                              | 0.197 | 0.514        | 3.892 | 69.98 | 4.311 | 23.66  | 5.542 | 8.839  | 9.553 | 16.92  | 0.901         | 1.007  |
| $(5,\!5,\!8)$            | 0.050                                                                   | 0.102                                                              | 0.111 | 0.177        | 2.379 | 2.526 | 1.205 | 2.336  | 1.824 | 2.481  | 1.142 | 1.874  | 1.002         | 2.445  |
|                          |                                                                         | 0.038                                                              |       | 0.151        | 1.605 | 8.005 | 1.718 | 7.783  | 4.691 | 39.03  | 1.398 | 16.60  | 1.001         | 1.008  |
| (6, 6, 10)               | 0.018                                                                   | 0.113                                                              | 0     | 0.194        | 2.083 | 23.57 | 1.797 | 4.521  | 1.888 | 35.45  | 2.590 | 8.784  | 1.001         | 1.008  |
|                          | (.) Detasets containing opeartors $\{\sin, \cos, inv, +, -, \times\}$ . |                                                                    |       |              |       |       |       |        |       |        |       |        |               |        |

Our CVGP finds symbolic expressions with the smallest NMSEs.

# Phase-field model for dendritic solidification in Material Science

In the vertical schedule, first the learning is concentrated on a subset of model parameters. This is done by feeding the model with designed training data in which the remaining parameters do not affect the dynamics of the PDEs.

After this phase, the learning is expanded to all parameters. The right panel of the figure above demonstrate that learning via the vertical schedule is able to identify the correct phase-field model while normal schedules cannot.



## Acknowledgement

This research was supported by NSF grants IIS-1850243, CCF-1918327.

