Can we count on Deep Learning: Characterizing Combinatorial Structures with Interpretability

Helen Jenne, Davis Brown, Herman Chau, Jackson Warley, Tim Doster, Henry Kvinge
Pacific Northwest National Laboratory, University of Washington

Feature Attribution Clustering for Exploration (FACE) is a method to help mathematicians characterize sets of mathematical objects via prototypical feature attribution maps.
Examples of characterization problems:
Q: Which graphs are planar?
A: Planar \leftrightarrow no $K_{5}, K_{3,3}$ minors
Q: Which graphs have perfect matchings? A: G has a perfect matching \leftrightarrow
for every subset of vertices $S, G \backslash S$ has at most |S| odd components

The FACE methodology

Algebraic combinatorics

Central character: the symmetric group S_{n}

\#\# + \#\#+\#\#

Weaving patterns

Any permutation can be written as a product of adjacent transpositions, called a reduced word.

Every reduced word that differs by a commutation relation has the same weaving pattern, e.g. $s_{1} s_{2} s_{3} s_{1} s_{2} s_{1} \sim s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$ Q: Which $\{0,1\}$ matrices are weaving patterns? Some families of reduced words have weaving patterns with nice characterizations.

Case Study: Two-Sided Ordered Words

Create dataset: Generated all TSO weaving patterns for $n=9$ (48,896 $10 \times 9\{0,1\}$ arrays) and the same number of non-TSO weaving patterns.

- Train model: Trained a CNN with two convolutional layers; 99\% test accuracy

Calculate feature attribution representations: Applied Shapley to 16,000 weaving patterns from the test set.
Find prototype feature attributions through clustering: Clustered Shapley outputs using k-means and calculated centroids for each cluster.
Mathematician analysis of prototypes

Example of application of algorithm to determine whether weaving pattern is TSO

ENERGY

Pacific Northwest national laboratory www.pnnl.gov

