
Consistency Trajectory Models: Learning Probability
Flow ODE Trajectory of Diffusion

Dongjun Kim∗†

Sony AI
Tokyo, Japan

dongjoun57@kaist.ac.kr

Chieh-Hsin Lai∗
Sony AI

Tokyo, Japan
chieh-hsin.Lai@sony.com

Wei-Hsiang Liao
Sony AI

Tokyo, Japan

Naoki Murata
Sony AI

Tokyo, Japan

Yuhta Takida
Sony AI

Tokyo, Japan

Yutong He†
Sony AI

Tokyo, Japan

Yuki Mitsufuji
Sony AI, Sony Group Corporation

Tokyo, Japan

Stefano Ermon
Stanford University

CA, USA

Abstract

Consistency Models (CM) [1] accelerate score-based diffusion model sampling
at the cost of sample quality but lack a natural way to trade-off quality for speed.
To address this limitation, we propose Consistency Trajectory Model (CTM), a
generalization encompassing CM and score-based models as special cases. CTM
trains a single neural network that can output scores (i.e., gradients of log-density)
and enables unrestricted traversal between any initial and final time along the
Probability Flow Ordinary Differential Equation (ODE) in a diffusion process.
CTM enables the efficient combination of adversarial training and denoising score
matching loss to enhance performance and sets state-of-the-art FIDs for one-step
diffusion model generation on CIFAR-10 (FID 1.73) and ImageNet 64× 64 (FID
2.06). CTM also enables a new family of sampling schemes, both deterministic
and stochastic, involving long jumps along the ODE solution trajectories.

1 Introduction

In diffusion model (DM) [2, 3], the encoder structure is formulated using a set of continuous-
time random variables defined by a fixed forward diffusion proces, dxt =

√
2tdwt, initialized

by the data variable, x0 ∼ pdata. A reverse-time process [4] from T to 0 is established dxt =
−2t∇ log pt(xt)dt+

√
2tdw̄t, where w̄t is the standard Wiener process in reverse-time, and pt(x)

is the marginal density of xt following the forward process. The solution of this reverse-time process
aligns with that of the forward-time process marginally (in distribution) when the reverse-time process
is initialized with xT ∼ pT . The deterministic counterpart of the reverse-time process, called the PF
ODE [3], is given by dxt

dt = −t∇ log pt(xt) =
xt−Ept0(x|xt)

[x|xt]

t , where pt0(x|xt) is the probability
distribution of the solution of the reverse-time stochastic process from time t to zero, initiated from
xt. Here, Ept0(x|xt)[x|xt] is the denoiser function [5], an alternative expression for the score function
∇ log pt(xt). For notational simplicity, we omit pt0(x|xt), a subscript in the expectation of the
denoiser, throughout the paper.

∗Equal contribution
†Work done during an internship at SONY AI

Neural Information Processing Systems (NeurIPS) 2023 Workshop on Diffusion Models.

In practice, the denoiser E[x|xt] is approximated using a neural network Dϕ, obtained by minimizing
the Denoising Score Matching (DSM) [6, 3] loss Ex0,t,p0t(x|x0)[∥x0−Dϕ(x, t)∥22], where p0t(x|x0)
is the transition probability from time 0 to t, initiated with x0. With the approximated denoiser, the
empirical PF ODE is given by dxt

dt =
xt−Dϕ(xt,t)

t . Sampling from DM involves solving the PF ODE,
equivalent to computing the integral∫ 0

T

dxt

dt
dt =

∫ 0

T

xt −Dϕ(xt, t)

t
dt ⇐⇒ x0 = xT +

∫ 0

T

xt −Dϕ(xt, t)

t
dt, (1)

where xT is sampled from a prior distribution π approximating pT . Decoding strategies of DM
primarily fall into two categories: score-based sampling with time-discretized numerical integral
solvers, and distillation sampling where a neural network directly estimates the integral.

Score-based Sampling Any off-the-shelf ODE solver, denoted as Solver(xT , T, 0;ϕ) (with an
initial value of xT at time T and ending at time 0), can be directly applied to solve Eq. (1) [3]. For
instance, DDIM [7] corresponds to a 1st-order Euler solver, while EDM [8] introduces a 2nd-order
Heun solver. Despite recent advancements in numerical solvers [9, 10], further improvements may be
challenging due to the inherent discretization error present in all solvers [11], ultimately limiting the
sample quality obtained with few NFEs.

Distillation Sampling Distillation models [12, 13] successfully amortize the sampling cost by
directly estimating the integral of Eq. (1) with a single neural network evaluation. However, their
multistep sampling approach [1] exhibits degrading sample quality with increasing NFE, lacking
a clear trade-off between computational budget (NFE) and sample fidelity. Furthermore, multistep
sampling is not deterministic, leading to uncontrollable sample variance.

2 CTM: An Unification of Score-based and Distillation Models

To address the challenges in both score-based and distillation samplings, we introduce the Consistency
Trajectory Model (CTM), which seamlessly integrates both decoding strategies. Consequently, our
model is versatile and can perform sampling through either SDE/ODE solving or direct prediction of
intermediate points along the PF ODE trajectory.

2.1 Decoder Parametrization of Consistency Trajectory Models

CTM predicts both infinitesimal changes and intermediate points of the PF ODE trajectory. Specifi-
cally, we define G(xt, t, s) as the solution of the PF ODE from t to s, initialized at xt:

G(xt, t, s) := xt +

∫ s

t

xu − E[x|xu]

u
du. (2)

G can access any intermediate point along the trajectory by varying final time s. However, with the
current expression of G, the infinitesimal change needed to recover the denoiser information (the
integrand) can only be obtained by evaluating the s-derivative at time t, ∂

∂sG(xt, t, s)|s=t. Therefore,
we introduce a dedicated expression for G using an auxiliary function g to enable easy access to both
the integral via G and the integrand via g with Lemma 1.
Lemma 1 (Unification of score-based and distillation models). Suppose that the score satisfies
supx

∫ T

0
∥∇ log pu(x)∥2 du <∞. The solution, G(xt, t, s), defined in Eq. (2) can be expressed as:

G(xt, t, s) =
s

t
xt +

(
1− s

t

)
g(xt, t, s) with g(xt, t, s) = xt +

t

t− s

∫ s

t

xu − E[x|xu]

u
du.

Here, g satisfies:

(i) When s = 0, G(xt, t, 0) = g(xt, t, 0) is the solution of PF ODE at s = 0, initialized at xt.

(ii) As s→ t, g(xt, t, s)→ E[x|xt]. Hence, g can be defined at s = t by: g(xt, t, t) := E[x|xt].

Indeed, the G’s expression in Lemma 1 is naturally linked to the Taylor approximation to the integral:

G(xt, t, s) = xt +

[
(s− t)

xt − E[x|xt]

t
+O

(
|t− s|2

)]
=

s

t
xt +

(
1− s

t

)[
E[x|xt] +O (|t− s|)︸ ︷︷ ︸

=g(xt,t,s)

]
,

2

for any s ≤ t. Here, it is evident that g includes all residual terms in Taylor expansion, which turns to
be the discretization error in sampling. The goal of CTM is to approximate this g-function using a
neural network gθ and estimate the solution trajectory with the parametrization inspired by Lemma 1:

Gθ(xt, t, s) :=
s

t
xt +

(
1− s

t

)
gθ(xt, t, s).

2.2 CTM Training

To achieve trajectory learning, CTM should match the model prediction to the ground truth G by
Gθ(xt, t, s) ≈ G(xt, t, s), for any s ≤ t. We opt to approximate G by solving the empirical PF
ODE with a pre-trained score model Dϕ. Our neural network is then trained to align with the
reconstruction: Gθ(xt, t, s) ≈ Solver(xt, t, s;ϕ). However, employing Solver throughout the
trajectory can significantly increase training time. To efficiently estimate the entire solution trajectory
with higher precision, we introduce soft matching, ensuring consistency between prediction from xt

and from Solver(xt, t, u;ϕ) for any u ∈ [s, t): Gθ(xt, t, s) ≈ Gsg(θ)
(
Solver(xt, t, u;ϕ), u, s

)
.

where sg(·) is stop-gradient. This soft matching spans two frameworks. As u = s, Eq. (??) enforces
global consistency matching, i.e., a reconstruction loss. In contrast, as u = t−∆t, Eq. (??) is local
consistency matching. Additionally, if s = 0, it recovers CM’s distillation loss.

To quantify the dissimilarity between Gθ(xt, t, s) and Gsg(θ)(Solver(xt, t, u;ϕ), u, s) and enforce
Eq. (??), we use the feature distance LPIPS d [14] by comparing

xest(xt, t, s) := Gsg(θ)

(
Gθ(xt, t, s), s, 0

)
xtarget(xt, t, u, s) := Gsg(θ)

(
Gsg(θ)

(
Solver(xt, t, u;ϕ), u, s

)
, s, 0

)
.

Overall, the CTM loss is defined as

LCTM(θ;ϕ) := Et∈[0,T]Es∈[0,t]Eu∈[s,t)Ex0,p0t(x|x0)

[
d
(
xtarget(x, t, u, s),xest(x, t, s)

)]
, (3)

which leads the model’s prediction, at optimum, to match with the empirical PF ODE’s solution
trajectory, defined by the pre-trained DM (teacher), see Appendix B (Propositions 2 and 4) for details.

2.3 Training Consistency Trajectory Models

Training CTM with Eq. (3) may empirically lead inaccurate estimation of gθ when s approaches t.
This is due to the learning signal of gθ being scaled with 1− s

t by Lemma 1, and this scale decreasing
to zero as s approaches t. Consequently, although our parametrization enables the estimation of both
the trajectory and its slope, the accuracy of slope (score) estimation may be degraded. To mitigate
this problem, we use Lemma 1’s conclusion that g(xt, t, t) = E[x|xt] when t = s and train gθ with:

LDSM(θ) = Et,x0,xt|x0
[∥x0 − gθ(xt, t, t)∥22].

Empirically, regularizing LCTM with LDSM improves score accuracy, which is especially important in
large NFE sampling regimes.

On the other hand, CTM, distilling from the teacher model, is constrained by the teacher’s Dϕ perfor-
mance. This challenge can be mitigated with adversarial training to improve trajectory estimation.
The one-step generation of CTM enables us to calculate the adversarial loss efficiently, in the similar
way of conventional GAN training:

LGAN(θ,η) = Epdata(x0)[log dη(x0)] + Et,xt

[
log
(
1− dη(xest)

)]
,

where dη is a discriminator. This adversarial training allows the student model (CTM) to beat the
teacher model (DM). To summarize, CTM allows the integration of reconstruction-based CTM loss,
diffusion loss, and adversarial loss with weighting functionsλDSM, λGAN ≥ 0:

L(θ,η) := LCTM(θ;ϕ) + λDSMLDSM(θ) + λGANLGAN(θ,η), (4)

in a single training framework, by optimizing minθ maxη L(θ,η).

3

Table 1: Performance comparisons on CIFAR-10.

Model NFE Unconditional Conditional

FID↓ NLL↓ FID↓

GAN Models
BigGAN [15] 1 8.51 ✗ -
StyleGAN-Ada [16] 1 2.92 ✗ 2.42
StyleGAN-D2D [17] 1 - ✗ 2.26
StyleGAN-XL [18] 1 - ✗ 1.85

Diffusion Models – Score-based Sampling
DDPM [19] 1000 3.17 3.75 -

DDIM [7] 100 4.16 - -
10 13.36 - -

Score SDE [7] 2000 2.20 3.45 -
VDM [20] 1000 7.41 2.49 -
LSGM [21] 138 2.10 3.43 -
EDM [8] 35 2.01 2.56 1.82

Diffusion Models – Distillation Sampling
KD [22] 1 9.36 ✗ -
DFNO [23] 1 5.92 ✗ -
Rectified Flow [24] 1 4.85 ✗ -
PD [12] 1 9.12 ✗ -
CD (official report) [1] 1 3.55 ✗ -
CD (retrained) 1 10.53 ✗ -
CD + GAN [25] 1 2.65 ✗ -
CTM (ours) 1 1.98 2.43 1.73

PD [12] 2 4.51 - -
CD [1] 2 2.93 - -
CTM (ours) 2 1.87 2.43 1.63

Table 2: Performance comparisons on Ima-
geNet 64× 64.

Model NFE FID↓ IS↑

ADM [26] 250 2.07 -
EDM [8] 79 2.44 48.88
BigGAN-deep [15] 1 4.06 -
StyleGAN-XL [18] 1 2.09 82.35

Diffusion Models – Distillation Sampling
PD [12] 1 15.39 -
BOOT [27] 1 16.3 -
CD [1] 1 6.20 40.08
CTM (ours) 1 2.06 70.86

PD [12] 2 8.95 -
CD [1] 2 4.70 -
CTM (ours) 2 1.90 64.14

0 5 10 15 20 25 30 35

NFE

2

4

6

8

10

F
ID

CTM

CM

Heun solver (CTM)

Figure 1: Comparison of samplers.

3 Sampling with CTM

Score-based Sampling CTM enables score evaluation via gθ(xt, t, t), supporting standard score-
based sampling with ODE/SDE solvers. The result is shown as the red curve in Figure 1.

Distillation Sampling CTM additionally enables time traversal along the solution trajectory, allowing
a new sampling method avoid ad-hoc noise injection as in CM. Suppose the sampling timesteps are
T = t0 > · · · > tN = 0. With xt0 ∼ π, where π is the prior distribution, CTM denoises xt0 to time
t1 with Gθ(xt0 , t0, t1), and repeating this denoising process until reaching to time tN = 0. A key
distinction between the CTM’s sampling and score-based sampling is that CTM avoids sampling
errors by directly estimating Eq. (2). However, score-based samplers like DDIM or EDM are
susceptible to discretization errors because they only estimates the denoiser term from the Taylor
expansion, ignoring the residual term, which dominates the integral scale for small NFE.

Figure 1 shows that CTM’s deterministic sampling (blue) reaches comparable performance as the
Heun’s solver (red) as NFE increases. In contrast, CM’s multistep sampler (green) significantly
degrades sample quality as NFE increases. This quality deterioration may be attributed to error
accumulation during the iterative long “jumps” for denoising. CM’s multistep sampling iteratively
conducts long jumps from tn to 0 for each step n, which aggregates the sampling error to be
O(
√
T + t1 + · · ·+ tN) (Theorem 5). In contrast, such time overlap does not occur in CTM,

eliminating the error accumulation, resulting in O(
√
T) error.

4 Experiments – Student (CTM) beats teacher (DM)

We evaluate CTM on CIFAR-10 and ImageNet 64× 64, using the pre-trained diffusion checkpoints
from EDM as the teacher models. We adopt EDM’s training configuration for LDSM(θ) and employ
StyleGAN-XL’s [18] discriminator for LGAN(θ,η) (Appendix B.3). In addition to the clear NFE-FID
trade-off in Figure 1, with GAN loss, CTM achieves new SOTA FIDS with 1 NFE, beating both EDM
and StyleGAN-XL. Additionally, CTM’s ability to approximate scores using gθ(xt, t, t) enables
evaluating Negative Log-Likelihood (NLL) [28, 29], also establishing a new SOTA NLL.

4

5 Conclusion

CTM allows unrestricted time traversal and seamless integration with prior models’ training advan-
tages. A universal framework for Consistency and Diffusion Models, CTM excels in both training
and sampling. Remarkably, it surpasses its teacher model, achieving SOTA results in FID and
likelihood for few-steps diffusion model sampling on CIFAR-10 and ImageNet 64× 64, highlighting
its versatility and process.

5

References
[1] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv

preprint arXiv:2303.01469, 2023.

[2] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

[3] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[4] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[5] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[6] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[7] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2020.

[8] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

[9] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[10] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. In The Eleventh International Conference on Learning Representations, 2022.

[11] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

[12] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2021.

[13] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho,
and Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14297–14306, 2023.

[14] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[15] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2018.

[16] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. Advances in neural information
processing systems, 33:12104–12114, 2020.

[17] Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting acgan: Auxiliary
classifier gans with stable training. Advances in neural information processing systems, 34:
23505–23518, 2021.

[18] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pages 1–10, 2022.

6

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[20] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
Advances in neural information processing systems, 34:21696–21707, 2021.

[21] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

[22] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[23] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.
Fast sampling of diffusion models via operator learning. In International Conference on
Machine Learning, pages 42390–42402. PMLR, 2023.

[24] Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2022.

[25] Haoye Lu, Yiwei Lu, Dihong Jiang, Spencer Ryan Szabados, Sun Sun, and Yaoliang Yu. Cm-
gan: Stabilizing gan training with consistency models. In ICML 2023 Workshop on Structured
Probabilistic Inference & Generative Modeling, 2023.

[26] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[27] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free
distillation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on
Structured Probabilistic Inference {\&} Generative Modeling, 2023.

[28] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training
of score-based diffusion models. Advances in Neural Information Processing Systems, 34:
1415–1428, 2021.

[29] Dongjun Kim, Byeonghu Na, Se Jung Kwon, Dongsoo Lee, Wanmo Kang, and Il-chul Moon.
Maximum likelihood training of implicit nonlinear diffusion model. Advances in Neural
Information Processing Systems, 35:32270–32284, 2022.

[30] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
Neural Information Processing Systems, 35:36479–36494, 2022.

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[32] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

[33] Kin Wai Cheuk, Ryosuke Sawata, Toshimitsu Uesaka, Naoki Murata, Naoya Takahashi, Shusuke
Takahashi, Dorien Herremans, and Yuki Mitsufuji. Diffroll: Diffusion-based generative music
transcription with unsupervised pretraining capability. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[34] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

[35] Koichi Saito, Naoki Murata, Toshimitsu Uesaka, Chieh-Hsin Lai, Yuhta Takida, Takao Fukui,
and Yuki Mitsufuji. Unsupervised vocal dereverberation with diffusion-based generative
models. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE, 2023.

7

[36] Carlos Hernandez-Olivan, Koichi Saito, Naoki Murata, Chieh-Hsin Lai, Marco A Martínez-
Ramirez, Wei-Hsiang Liao, and Yuki Mitsufuji. Vrdmg: Vocal restoration via diffusion posterior
sampling with multiple guidance. arXiv preprint arXiv:2309.06934, 2023.

[37] Naoki Murata, Koichi Saito, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Yuki Mitsufuji,
and Stefano Ermon. Gibbsddrm: A partially collapsed gibbs sampler for solving blind inverse
problems with denoising diffusion restoration. arXiv preprint arXiv:2301.12686, 2023.

[38] Dongjun Kim, Yeongmin Kim, Wanmo Kang, and Il-Chul Moon. Refining generative process
with discriminator guidance in score-based diffusion models. arXiv preprint arXiv:2211.17091,
2022.

[39] Cheng Lu, Kaiwen Zheng, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Maximum
likelihood training for score-based diffusion odes by high order denoising score matching. In
International Conference on Machine Learning, pages 14429–14460. PMLR, 2022.

[40] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbot, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

[41] Shitong Shao, Xu Dai, Shouyi Yin, Lujun Li, Huanran Chen, and Yang Hu. Catch-up distillation:
You only need to train once for accelerating sampling. arXiv preprint arXiv:2305.10769, 2023.

[42] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft
truncation: A universal training technique of score-based diffusion model for high precision
score estimation. In International Conference on Machine Learning, pages 11201–11228.
PMLR, 2022.

[43] Giannis Daras, Yuval Dagan, Alexandros G Dimakis, and Constantinos Daskalakis. Consistent
diffusion models: Mitigating sampling drift by learning to be consistent. arXiv preprint
arXiv:2302.09057, 2023.

[44] Yangming Li, Zhaozhi Qian, and Mihaela van der Schaar. Do diffusion models suffer error prop-
agation? theoretical analysis and consistency regularization. arXiv preprint arXiv:2308.05021,
2023.

[45] Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, and Stefano
Ermon. Fp-diffusion: Improving score-based diffusion models by enforcing the underlying
score fokker-planck equation. 2023.

[46] Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Naoki Murata, Yuki Mitsufuji, and Stefano
Ermon. On the equivalence of consistency-type models: Consistency models, consistent
diffusion models, and fokker-planck regularization. arXiv preprint arXiv:2306.00367, 2023.

[47] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347–10357. PMLR, 2021.

[49] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

[50] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions. In The
Eleventh International Conference on Learning Representations, 2022.

[51] Dennis D Boos. A converse to scheffe’s theorem. The Annals of Statistics, pages 423–427,
1985.

[52] TJ Sweeting. On a converse to scheffé’s theorem. The Annals of Statistics, 14(3):1252–1256,
1986.

8

[53] W.T. Reid. Ordinary Differential Equations. Applied mathematics series. Wiley, 1971.

[54] Bernt Øksendal. Stochastic differential equations. In Stochastic differential equations, pages
65–84. Springer, 2003.

[55] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in
the space of probability measures. Springer Science & Business Media, 2005.

9

Contents

1 Introduction 1

2 CTM: An Unification of Score-based and Distillation Models 2

2.1 Decoder Parametrization of Consistency Trajectory Models 2

2.2 CTM Training . 3

2.3 Training Consistency Trajectory Models . 3

3 Sampling with CTM 4

4 Experiments – Student (CTM) beats teacher (DM) 4

5 Conclusion 5

A Related Works 11

B Theoretical Insights on CTM 11

B.1 Convergence Analysis – Distillation from Teacher Models 11

B.2 Accumulated Errors analysis in sampling. 13

B.3 Training Details . 13

B.4 Evaluation Details . 14

C Additional Generated Samples 14

D Theoretical Supports and Proofs 16

D.1 Proof of Lemma 1 . 16

D.2 Proof of Theorem ?? . 16

D.3 Proof of Proposition 2 . 16

D.4 Proof of Proposition 4 . 17

D.5 Proof of Proposition ?? . 18

D.6 Proof of Proposition ?? . 19

D.7 Proof of Proposition ?? . 20

10

A Related Works

Diffusion Models DMs excel in high-fidelity synthetic image and audio generation [26, 30, 31], as
well as in applications like media editing, restoration [32–37]. Recent research aims to enhance DMs
in sample quality [29, 38], density estimation [28, 39], and especially, sampling speed [7].

Fast Sampling of DMs The SDE framework underlying DMs [3] has driven research into various
numerical methods for accelerating DM sampling, exemplified by works such as [7, 10, 9]. Notably,
[9] reduced the ODE solver steps to as few as 10-15. Other approaches involve learning the solu-
tion operator of ODEs [23], discovering optimal transport paths for sampling [24], or employing
distillation techniques [22, 12, 40, 41]. However, previous distillation models may experience slow
convergence or extended runtime. Gu et al. [27] introduced a bootstrapping approach for data-free
distillation. Furthermore, Song et al. [1] introduced CM which extracts DMs’ PF ODE to establish a
direct mapping from noise to clean predictions, achieving one-step sampling while maintaining good
sample quality. CM has been adapted to enhance the training stability of GANs, as [25]. However,
it’s important to note that their focus does not revolve around achieving sampling acceleration for
DMs, nor are the results restricted to simple datasets.

Consistency of DMs Score-based generative models rely on a differential equation framework,
employing neural networks trained on data to model the conversion between data and noise. These
networks must satisfy specific consistency requirements due to the mathematical nature of the
underlying equation. Early investigations, such as [42], identified discrepancies between learned
scores and ground truth scores. Recent developments have introduced various consistency concepts,
showing their ability to enhance sample quality [43, 44], accelerate sampling speed [1], and improve
density estimation in diffusion modeling [45]. Notably, Lai et al. [46] established the theoretical
equivalence of these consistency concepts, suggesting the potential for a unified framework that can
empirically leverage their advantages. CTM can be viewed as the first framework which achieves all
the desired properties.

B Theoretical Insights on CTM

In this section, we explore several theoretical aspects of CTM, encompassing convergence analysis
(Section B.1), properties of well-trained CTM, and accumulated errors analysis during sampling.

We first introduce and review some notions. Starting at time t with an initial value of xt and ending
at time s, recall that G(xt, t, s) represents the true solution of the PF ODE, and G(xt, t, s;ϕ) is the
solution function of the following empirical PF ODE.

dxu

du
=

xu −Dϕ(xu, u)

u
, u ∈ [0, T]. (5)

Here ϕ denotes the teacher model’s weights learned from DSM. Thus, G(xt, t, s;ϕ) can be expressed
as

G(xt, t, s;ϕ) =
s

t
xt + (1− s

t
)g(xt, t, s;ϕ),

where g(xt, t, s;ϕ) = xt +
t

t−s

∫ s

t
xu−Dϕ(xu,u)

u du.

B.1 Convergence Analysis – Distillation from Teacher Models

Convergence along Trajectory in a Time Discretization Setup. CTM’s practical implementation
follows CM’s one, utilizing discrete timesteps t0 = 0 < t1 < · · · < tN = T for training. Initially,
we assume local consistency matching for simplicity, but this can be extended to soft matching. This
transforms the CTM loss in Eq. (3) to the discrete time counterpart:

LN
CTM(θ;ϕ) := En∈[[1,N]]Em∈[[0,n]]Ex0,p0tn (x|x0)

[
d
(
xtarget(xtn , tn, tm),xest(xtn , tn, tm)

)]
,

where d(·, ·) is a metric, and

xest(xtn , tn, tm) := Gθ

(
Gθ(xtn , tn, tm), tm, 0

)
11

xtarget(xtn , tn, tn−1, tm) := Gθ

(
Gθ

(
Solver(xtn , tn, tn−1;ϕ), tn−1, tm

)
, tm, 0

)
.

In the following theorem, we demonstrate that irrespective of the initial time tn and end time tm,
CTM Gθ(·, tn, tm;ϕ), will eventually converge to its teacher model, G(·, tn, tm;ϕ).

Proposition 2. Define ∆N t := max
n∈[[1,N]]

{|tn+1 − tn|}. Assume that Gθ is uniform Lipschitz in x

and that the ODE solver admits local truncation error bounded uniformly by O((∆N t)p+1) with
p ≥ 1. If there is a θN so that LN

CTM(θN ;ϕ) = 0, then for any n ∈ [[1, N]] and m ∈ [[1, n]]

sup
x∈RD

d
(
GθN

(GθN
(x, tn, tm), tm, 0), GθN

(G(x, tn, tm;ϕ), tm, 0)
)
= O((∆N t)p)(tn − tm).

Similar argument applies, confirming convergence along the PF ODE trajectory, ensuring Eq. (??)
with θ replacing sg(θ):

Gθ(xt, t, s) ≈ Gθ(Solver(xt, t, t−∆t;ϕ), t−∆t, s)

by enforcing the following loss

L̃N
CTM(θ;ϕ) := En∈[[1,N]]Em∈[[0,n]]Ex0,p0tn (x|x0)

[
d
(
x̃target(xtn , tn, tm), x̃est(xtn , tn, tm)

)]
,

where

x̃est(xtn , tn, tm) := Gθ(xtn , tn, tm)

x̃target(xtn , tn, tn−1, tm) := Gθ

(
Solver(xtn , tn, tn−1;ϕ), tn−1, tm

)
.

Proposition 3. If there is a θN so that L̃N
CTM(θN ;ϕ) = 0, then for any n ∈ [[1, N]] and m ∈ [[1, n]]

sup
x∈RD

d
(
GθN

(x, tn, tm), G(x, tn, tm;ϕ)
)
= O((∆N t)p)(tn − tm).

Convergence of Densities. In Proposition 2, we demonstrated point-wise trajectory convergence,
from which we infer that CTM may converge to its training target in terms of density. More precisely,
in Proposition 4, we establish that if CTM’s target xtarget is derived from the teacher model (as defined
above), then the data density induced by CTM will converge to that of the teacher model. Specifically,
if the target xtarget perfectly approximates the true G-function:

xtarget(xtn , tn, tn−1, tm) ≡ G(xtn , tn, tm), for all n ∈ [[1, N]],m ∈ [[0, n]], N ∈ N. (6)

Then the data density generated by CTM will ultimately learn the data distribution pdata.

Simplifying, we use the ℓ2 for the distance metric d and consider the prior distribution π to be pT ,
which is the marginal distribution at time t = T defined by the diffusion process in Eq. (??).

Proposition 4. Suppose that

(i) The uniform Lipschitzness of Gθ (and G),

sup
θ
∥Gθ(x, t, s)−Gθ(x

′, t, s)∥2 ≤ L ∥x− x′∥2 , for all x,x′ ∈ RD, t, s ∈ [0, T],

(ii) The uniform boundedness in θ of Gθ: there is a L(x) ≥ 0 so that

sup
θ
∥Gθ(x, t, s)∥2 ≤ L(x) <∞, for all x ∈ RD, t, s ∈ [0, T]

If for any N , there is a θN such that LN
CTM(θN ;ϕ) = 0. Let pθN

(·) denote the pushforward
distribution of pT induced by GθN

(·, T, 0). Then, as N →∞, ∥pθN
(·)− pϕ(·)∥∞ → 0. Particularly,

if the condition in Eq. (6) is satisfied, then ∥pθN
(·)− pdata(·)∥∞ → 0 as N →∞.

12

B.2 Accumulated Errors analysis in sampling.

We begin by clarifying the concept of “density transition by a function”. For a measurable mapping
T : Ω→ Ω and a measure ν on the measurable space Ω, the notation T ♯ν denotes the pushforward
measure, indicating that if a random vector X follows the distribution ν, then T (X) follows the
distribution T ♯ν.

Given a sampling timestep T = t0 > t1 > · · · > tN = 0. Let pθ∗,N represent the density resulting
from N-steps of γ-sampling initiated at pT . That is,

pθ∗,N :=
N−1

n=0

(
T θ∗√

1−γ2tn+1→tn+1
◦ T θ∗

tn→
√

1−γ2tn+1

)
♯pT .

Here,
N−1

n=0

denotes the sequential composition. We assume an optimal CTM which precisely distills

information from the teacher model Gθ∗(·) = G(·, t, s;ϕ) for all t, s ∈ [0, T].
Theorem 5 (Accumulated errors of N-steps γ-sampling). Let γ ∈ [0, 1].

DTV (pdata, pθ∗,N) = O

(
N−1∑
n=0

√
tn −

√
1− γ2tn+1

)
.

Here, Tt→s : RD → RD denotes the oracle transition mapping from t to s, determined by Eq. (??).
The pushforward density via Tt→s is denoted as Tt→s♯pt, with similar notation applied to T θ∗

t→s♯pt,
where T θ∗

t→s denotes the transition mapping associated with the optimal CTM trained from Eq. (4).

B.3 Training Details

Following Karras et al. [8], we utilize the EDM’s skip scale and output scale for gθ modeling as

gθ(xt, t, s) =
σ2

data

t2 + σ2
data

xt +
tσdata√
t2 + σ2

data

NNθ(xt, t, s),

where NNθ refers to a neural network that takes the same input arguments as gθ. The advantage
of this EDM-style skip and output scaling is that if we copy the teacher model’s parameters to the
student model’s parameters, except student model’s s-embedding structure, gθ(xt, t, t) initialized
with ϕ would be close to the teacher denoiser Dϕ(xt, t). This good initialization partially explains
the fast convergence speed.

We use 4×V100 (16G) GPUs for CIFAR-10 experiments and 8×A100 (40G) GPUs for ImageNet
experiments. We use the warm-up for λGAN hyperparameter. On CIFAR-10, we deactivate GAN
training with λGAN = 0 until 50k training iterations and activate the generator training with the
adversarial loss (added to CTM and DSM losses) by increasing λGAN to one. The minibatch per
GPU is 16 in the CTM+DSM training phase, and 11 in the CTM+DSM+GAN training phase. On
ImageNet, due to the excessive training budget, we deactivate GAN only for 10k iterations and
activate GAN training afterwards. We fix the minibatch to be 11 throughout the CTM+DSM or the
CTM+DSM+GAN training in ImageNet.

We follow the training configuration mainly from CM, but for the discriminator training, we follow
that of StyleGAN-XL [18]. For LCTM calculation, we use LPIPS [14] as a feature extractor. We
choose t and s from the N -discretized timesteps to calculateLCTM, following CM. Across the training,
we choose the maximum number of ODE steps to prevent a single iteration takes too long time. For
CIFAR-10, we choose N = 18 and the maximum number of ODE steps to be 17. For ImageNet, we
choose N = 40 and the maximum number of ODE steps to be 20. We find the tendency that the
training performance is improved by the number of ODE steps, so one could possibly improve our
ImageNet result by choosing larger maximum ODE steps.

For LDSM calculation, we select 50% of time sampling from EDM’s original scheme of t ∼
N (−1.2, 1.22). For the other half time, we first draw sample from ξ ∼ [0, 0.7] and transform
it using (σ

1/ρ
max + ξ(σ

1/ρ
min − σ

1/ρ
max))ρ. This specific time sampling blocks the neural network to forget

the denoiser information for large time. For LGAN calculation, we use two feature extractors to

13

transform GAN input to the feature space: the EfficientNet [47] and DeiT-base [48]. Before obtaining
an input’s feature, we upscale the image to 224x224 resolution with bilinear interpolation. After
transforming to the feature space, we apply the cross-channel mixing and cross-scale mixing to
represent the input with abundant and non-overlapping features. The output of the cross-scale mixing
is a feature pyramid consisting of four feature maps at different resolutions [18]. In total, we use eight
discriminators (four for EfficientNet features and the other four for DeiT-base features) for GAN
training.

Following CM, we apply Exponential Moving Average (EMA) to update sg(θ) by

sg(θ)← stopgrad(µsg(θ) + (1− µ)θ).

However, unlike CM, we find that our model bestly works with µ = 0.999 or µ = 0.9999, which
largely remedy the subtle instability arise from GAN training. Except for the unconditional CIFAR-10
training with ϕ, we set µ to be 0.999 as default. Throughout the experiments, we use σmin = 0.002,
σmax = 80, ρ = 7, and σdata = 0.5.

B.4 Evaluation Details

For likelihood evaluation, we solve the PF ODE, following the practice suggested in Kim et al. [29]
with the RK45 [49] ODE solver of tol = 1e− 3 and tmin = 0.002.

Throughout the paper, we choose γ = 0 otherwise stated. In particular, for Tables 1 and 2, we report
the sample quality metrics based on either the one-step sampling of CM or the γ = 0 sampling for
NFE 2 case. For CIFAR-10, we calculate the FID score based on Karras et al. [8] statistics. For
ImageNet, we compute the metrics following Dhariwal and Nichol [26] and their pre-calculated
statistics. For the StyleGAN-XL ImageNet result, we recalculated the metrics based on the statistics
released by Dhariwal and Nichol [26], using StyleGAN-XL’s official checkpoint.

For large-NFE sampling, we follow the EDM’s time discretization. Namely, if we draw n-NFE
samples, we equi-divide [0, 1] with n points and transform it (say ξ) to the time scale by (σ

1/ρ
max +

(σ
1/ρ
min − σ

1/ρ
max)ξ)ρ. However, we emphasize the time discretization for both training and sampling is a

modeler’s choice.

C Additional Generated Samples

14

(a) Tench (b) Tree frog (c) Elephant (d) Kimono

Figure 2: Uncurated sample comparisons with identical starting points, generated by EDM (FID
2.44) with NFE 79, CTM (FID 2.19) with NFE 1, CTM (FID 1.90) with NFE 2, and CM (FID 6.20)
with NFE 1, on (a) tench (class id: 0), (b) tree frog (class id: 31), (c) elephant (class id: 386), and (d)
kimono (class id: 614).

15

D Theoretical Supports and Proofs

D.1 Proof of Lemma 1

Proof of Lemma 1. As the score,∇ log pt(x), is integrable, the Fundamental Theorem of Calculus
applies, leading to

lim
s→t

g(xt, t, s) = xt + t lim
s→t

1

t− s

∫ s

t

xu − E[x0|xu]

u
du

= xt − t
xt − E[x0|xt]

t
= E[x0|xt].

■

D.2 Proof of Theorem ??

Proof of Theorem ??. Define Tt→s as the oracle transition mapping from t to s via the diffusion
process Eq. (??). Let T θ∗

t→s(·) represent the transition mapping from the optimal CTM, and T ϕ
t→s(·)

represent the transition mapping from the empirical probability flow ODE. Since all processes start
at point T with initial probability distribution pT and T θ∗

t→s(·) = T
ϕ
t→s(·), Theorem 2 in [50] and

TT→t♯pT = pt from Proposition ?? tell us that for t > s

DTV

(
Tt→s♯pt, T θ∗

t→s♯pt

)
= DTV

(
Tt→s♯pt, T ϕ

t→s♯pt

)
= O(t− s). (7)

DTV

(
Tt→0T√1−γ2t→t

T
T→
√

1−γ2t
♯pT , T θ∗

t→0T√1−γ2t→t
T θ∗

T→
√

1−γ2t
♯pT

)
(a)

≤DTV

(
Tt→0T√1−γ2t→t

T
T→
√

1−γ2t
♯pT , T θ∗

t→0T√1−γ2t→t
T
T→
√

1−γ2t
♯pT

)
+DTV

(
T θ∗

t→0T√1−γ2t→t
T
T→
√

1−γ2t
♯pT , T θ∗

t→0T√1−γ2t→t
T θ∗

T→
√

1−γ2t
♯pT

)
(b)
=DTV

(
Tt→0TT→t♯pT , T θ∗

t→0TT→t♯pT

)
+DTV

(
T
T→
√

1−γ2t
♯pT , T θ∗

T→
√

1−γ2t
♯pT

)
(c)
=DTV

(
Tt→0♯pt, T θ∗

t→0♯pt

)
+DTV

(
T
T→
√

1−γ2t
♯pT , T θ∗

T→
√

1−γ2t
♯pT

)
(d)
=O(

√
t) +O(

√
T −

√
1− γ2t).

Here (a) is obtained from the triangular inequality, (b) and (c) are due to T√
1−γ2t→t

T
T→
√

1−γ2t
=

TT→t and TT→t♯pT = pt from Proposition ??, and (d) comes from Eq. (7).

■

D.3 Proof of Proposition 2

Proof of Proposition 2. Consider a LPIPS-like metric, denoted as d(·, ·), determined by a feature
extractor F of pdata. That is, d(x,y) = ∥F(x)−F(y)∥q for q ≥ 1. For simplicity of notation, we
denote θN as θ. Since LN

CTM(θ;ϕ) = 0, it implies that for any xtn , n ∈ [[1, N]], and m ∈ [[1, n]]

F
(
Gθ(Gθ(xtn+1 , tn+1, tm), tm, 0)

)
= F

(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
(8)

Denote

en,m := F
(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
−F

(
Gθ(G(xtn , tn, tm;ϕ), tm, 0)

)
.

16

Then due to Eq. (8) and G is an ODE-trajectory function that G(xtn+1 , tn+1, tm;ϕ) =
G(xtn , tn, tm;ϕ), we have

en+1,m = F
(
Gθ(Gθ(xtn+1

, tn+1, tm), tm, 0)
)
−F

(
Gθ(G(xtn+1

, tn+1, tm;ϕ), tm, 0)
)

= F
(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(G(xtn , tn, tm;ϕ), tm, 0)

)
= F

(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
+ F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
−F

(
Gθ(G(xtn , tn, tm;ϕ), tm, 0)

)
= F

(
Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)
+ en,m.

Therefore,

∥en+1,m∥q ≤
∥∥∥F(Gθ(Gθ(x

ϕ
tn , tn, tm), tm, 0)

)
−F

(
Gθ(Gθ(xtn , tn, tm), tm, 0)

)∥∥∥
q
+ ∥en,m∥q

≤ L1L
2
2

∥∥∥xϕ
tn − xtn

∥∥∥
q
+ ∥en,m∥q

= O((tn+1 − tn)
p+1) + ∥en,m∥q .

Notice that since Gθ(xtm , tm, tm) = xtm = G(xtm , tm, tm;ϕ), em,m = 0.

So we can obtain via induction that

∥en+1,m∥q ≤ ∥em,m∥q +
n−1∑
k=m

O((tk+1 − tk)
p+1)

=

n−1∑
k=m

O((tk+1 − tk)
p+1)

≤ O((∆N t)p)(tn − tm).

■

Indeed, an analogue of Proposition 2 holds for time-conditional feature extractors.

Let dt(·, ·) be a LPIPS-like metric determined by a time-conditional feature extractor Ft. That is,
dt(x,y) = ∥Ft(x)−Ft(y)∥q for q ≥ 1. We can similarly derive

sup
x∈RD

dtm
(
Gθ(x, tn, tm), G(x, tn, tm;ϕ)

)
= O((∆N t)p)(tn − tm).

D.4 Proof of Proposition 4

Proof of Proposition 4. We first prove that for any t ∈ [0, T] and s ≤ t, as N →∞,

sup
x∈RD

∥GθN
(GθN

(x, t, s), s, 0), GθN
(G(x, t, s;ϕ), s, 0)∥2 → 0. (9)

We may assume {tn}Nn=1 so that tm = s, tn = t, and tm+1 → s, tn+1 → t as ∆N t→∞.

sup
x
∥GθN

(GθN
(x, t, s), s, 0), GθN

(G(x, t, s;ϕ), s, 0)∥2

≤ sup
x
∥GθN

(GθN
(x, t, s), s, 0), GθN

(GθN
(x, tn+1, tm+1;ϕ), tm+1, 0)∥2

+sup
x
∥GθN

(GθN
(x, tn+1, tm+1;ϕ), tm+1, 0), GθN

(G(x, tn+1, tm+1;ϕ), tm+1, 0)∥2

+sup
x
∥GθN

(G(x, tn+1, tm+1;ϕ), tm+1, 0), GθN
(G(x, t, s;ϕ), s, 0)∥2

Since both G and GθN
are uniform continuous on RD × [0, T]× [0, T], together with Proposition 2,

we obtain Eq. (9) as ∆N t→∞.

In particular, Eq. (9) implies that when N →∞
sup
x
∥GθN

(GθN
(x, T, 0), 0, 0)−GθN

(G(x, T, 0;ϕ), 0, 0)∥2

17

=sup
x
∥GθN

(x, T, 0)−G(x, T, 0;ϕ)∥2 → 0.

This implies that pθN
(·), the pushforward distribution of pT induced by GθN

(·, T, 0), converges in
distribution to pϕ(·). Note that since {GθN

}N is uniform Lipschitz

∥Gθ(x, t, s)−Gθ(x
′, t, s)∥2 ≤ L ∥x− x′∥2 , for all x,x′ ∈ RD, t, s ∈ [0, T], and θ,

{GθN
}N is asymptotically uniformly equicontinuous. Moreover, {GθN

}N is uniform bounded in
θN . Therefore, the converse of Scheffé’s theorem [51, 52] implies that ∥pθN

(·)− pϕ(·)∥∞ → 0 as
N → ∞. Similar argument can be adapted to prove ∥pθN

(·)− pdata(·)∥∞ → 0 as N → ∞ if the
regression target pϕ(·) is replaced with pdata(·). ■

D.5 Proof of Proposition ??

Lemma 6. Let f : RD × [0, T]→ RD be a function which satisfies the following conditions:

(a) f(·, t) is Lipschitz for any t ∈ [0, T]: there is a function L(t) ≥ 0 so that for any t ∈ [0, T]
and x,y ∈ RD

∥f(x, t)− f(y, t)∥ ≤ L(t) ∥x− y∥ ,

(b) Linear growth in x: there is a L1- integrable function M(t) so that for any t ∈ [0, T] and
x ∈ RD

∥f(x, t)∥ ≤M(t)(1 + ∥x∥).

Consider the following ODE

x′(τ) = f(x(τ), τ) on [0, T]. (10)

Fix a t ∈ [0, T], the solution operator T of Eq. (10) with an initial condition xt is defined as

T [xt](s) := xt +

∫ s

t

f(x(τ ;xt), τ) dτ, s ∈ [t, T]. (11)

Here x(τ ;xt) denotes the solution at time τ starting from the initial value xt. Then T is an injective
operator. Moreover, T [·](s) : RD → RD is bi-Lipschitz; that is, for any xt, x̂t ∈ RD

e−L(s−t) ∥xt − x̂t∥2 ≤ ∥T [xt](s)− T [x̂t](s)∥2 ≤ eL(t−s) ∥xt − x̂t∥2 . (12)

Here L := supt∈[0,T] L(t) <∞. In particular, if xt ̸= x̂t, T [xt](s) ̸= T [x̂t](s) for all s ∈ [t, T].

Proof of Lemma 6. Assumptions (a) and (b) ensure the solution operator in Eq. (11) is well-defined
by applying Carathéodory-type global existence theorem [53]. We denote T [xt](s) as x(s;xt). We
need to prove that for any distinct initial values xt and x̂t starting from t, T [xt] ̸≡ T [x̂t]. Suppose
on the contrary that there is an s0 ∈ [t, T] so that T [xt](s0) = T [x̂t](s0). For s ∈ [t0, s0], consider
y(s;xt) := x(t+ s0 − s;xt) and y(s; x̂t) := x(t0 + s0 − s; x̂t). Then both y(s;xt) and y(s; x̂t)
satisfy the following ODE {

y′(s) = −f(y(s), s), s ∈ [t, s0]

y(t) = T [xt](s0) = T [x̂t](s0)
(13)

Thus, the uniqueness theorem of solution to Eq. (13) leads to y(s0;xt) = y(s0; x̂t), which means
xt = x̂t. This contradicts to the assumption. Hence, T is injective.

Now we show that T [·](s) : RD → RD is bi-Lipschitz for any s ∈ [t, T]. For any xt, x̂t ∈ RD,

∥T [xt](s)− T [x̂t](s)∥2 = ∥x(s;xt)− x̂(s; x̂t)∥2

≤ ∥xt − x̂t∥2 +
∫ s

t

∥f(x(τ ;xt), τ)− f(x̂(τ ; x̂t), τ)∥2 dτ

≤ ∥xt − x̂t∥2 + L

∫ s

t

∥x(τ ;xt)− x̂(τ ; x̂t)∥2 dτ.

18

By applying Gröwnwall’s lemma, we obtain

∥T [xt](s)− T [x̂t](s)∥2 = ∥x(s;xt)− x̂(s; x̂t)∥2 ≤ eL(s−t) ∥xt − x̂t∥2 . (14)

On the other hand, consider the reverse time ODE of Eq. (10) by setting τ = τ(u) := t + s − u,
y(u) := x(t+s−u), and h(y(u), u) := −f(y(u), t+s−u), then y satisfies the following equation

y′(u) = h(y(u), u), u ∈ [t, s]. (15)

Similarly, we define the solution operator to Eq. (15) as

S[yt](s) := yt +

∫ s

t

h(y(u;yt), u) du. (16)

Here yt denotes the initial value of Eq. (15) and y(u;yt) is the solution starting from yt. Due to the
Carathéodory-type global existence theorem, the operator S[·](s) is well-defined and

S[x(s;xt)](s) = xt, S[x̂(s;xt)](s) = x̂t.

For simplicity, let yt := x(s;xt) and ŷt := x̂(s;xt). Also, denote the solutions starting from initial
values yt and ŷt as y(u;yt) and ŷ(u; ŷt), respectively. Therefore, using a similar argument, we
obtain

∥xt − x̂t∥2 = ∥S[yt](s)− S[ŷt](s)∥2

≤ ∥x(s;xt)− x̂(s;xt)∥2 +
∫ s

t

∥h(y(u;yt), u)− h(ŷ(u; ŷt), u)∥2 du

≤ ∥x(s;xt)− x̂(s;xt)∥2 + L

∫ s

t

∥y(u;yt)− ŷ(u; ŷt)∥2 du.

= ∥T [xt](s)− T [x̂t](s)∥2 + L

∫ s

t

∥y(u;yt)− ŷ(u; ŷt)∥2 du.

By applying Gröwnwall’s lemma, we obtain

∥xt − x̂t∥2 ≤ eL(s−t) ∥T [xt](s)− T [x̂t](s)∥2 .

Therefore,

e−L(s−t) ∥xt − x̂t∥2 ≤ ∥T [xt](s)− T [x̂t](s)∥2 .

■

Proof of Proposition ??. With the definition of G(xt, t, s;ϕ), we obtain

G(xt, t, s;ϕ) =
s

t
xt + (1− s

t
)g(xt, t, s;ϕ)

= xt +

∫ s

t

xu −Dϕ(xu, u)

u
du.

Here, g(xt, t, s;ϕ) = xt +
t

t−s

∫ s

t
xu−Dϕ(xu,u)

u du. Thus, the result follows by applying Lemma 6
to the integral form of G(xt, t, s;ϕ).

■

D.6 Proof of Proposition ??

Lemma 7. Let X be a random vector on RD and h : RD → RD be a bi-Lipschitz mapping with
Lipschitz constant L > 0; namely, for any x,y ∈ RD

L−1 ∥x− y∥2 ≤ ∥h(x)− h(y)∥2 ≤ L ∥x− y∥2 .

Then

L−2Var(X) ≤ Var(h(X)) ≤ L2Var(X).

19

Proof of Lemma 7. Let Y be an i.i.d. copy of X . Then h(X) and h(Y) are also independent.
Thus, cov(X,Y) = 0 and cov(h(X), h(Y)) = 0.

2Var (h(X)) = Var (h(X)− h(Y))

= E
[
(h(X)− h(Y))

2
]
− (E [h(X)− h(Y)])

2
. (17)

Since h(X) and h(Y) are identically distributed, E [h(X)− h(Y)] = E [h(X)] − E [h(Y)] = 0.
Thus, by Lipschitzness of h

2Var (h(X)) = E
[
(h(X)− h(Y))

2
]

(18)

≤ L2E
[
(X − Y)

2
]

= 2L2Var (X) .

The final equality follows the same reasoning as in Eq. (17). Likewise, we can apply the argument
from Eq. (18) to show that

2Var (h(X)) = E
[
(h(X)− h(Y))

2
]

≥ L−2E
[
(X − Y)

2
]

= 2L−2Var (X) .

Therefore, L−2Var (X) ≤ Var (X) ≤ L2Var (X). ■

Proof of Proposition ??. For any n ∈ N, since Gθ∗(Xn, tn,
√
1− γ2tn+1) and Zn+1 are inde-

pendent,

Var (Xn+1) = Var
(
Gθ∗(Xn, tn,

√
1− γ2tn+1)

)
+ Var (Zn+1)

= Var
(
Gθ∗(Xn, tn,

√
1− γ2tn+1)

)
+ γ2σ2(tn+1). (19)

Proposition ?? implies that Gθ∗(·, tn,
√
1− γ2tn+1) is bi-Lipschitz and that for any x,y

ζ−1(tn, tn+1, γ) ∥x− y∥2 ≤
∥∥∥Gθ∗(x, tn,

√
1− γ2tn+1)−Gθ∗(y, tn,

√
1− γ2tn+1)

∥∥∥
2

≤ ζ(tn, tn+1, γ) ∥x− y∥2 , (20)

where ζ(tn, tn+1, γ) = exp
(
2Lϕ(tn −

√
1− γ2tn+1)

)
. Proposition ?? follows immediately from

the inequalities (19) and (20). ■

D.7 Proof of Proposition ??

Proof of Proposition ??. {pt}Tt=0 is known to satisfy the Fokker-Planck equation [54] (under some
technical regularity conditions). In addition, we can rewrite the Fokker-Planck equation of {pt}Tt=0
as the following equation (see Eq. (37) in [3])

∂pt
∂t

= −div (Wtpt) , in (0, T)× RD (21)

where Wt := −t∇ log pt.

Now consider the continuity equation for µt defined by Wt

∂µt

∂t
= −div (Wtµt) in (0, T)× RD. (22)

Since the score∇ log pt is of linear growth in x and upper bounded by a summable function in t, the
vector field Wt := −t∇ log pt : [0, T]× RD → RD satisfies that∫ T

0

(
sup
x∈K
∥Wt(x)∥2 + Lip(Wt,K) dt

)
<∞,

20

for any compact set K ⊂ RD. Here Lip(Wt,K) denotes the Lipschitz constant of Wt on K.

Thus, Proposition 8.1.8 of [55] implies that for pT -a.e. x, the following reverse time ODE (which is
the Eq. (??)) admits a unique solution on [0, T]{

d
dtXt(x) = Wt (Xt(x̂))

XT (x̂) = x.
(23)

Moreover, µt = Xt♯pT , for t ∈ [0, T]. By applying the uniqueness for the continuity equation
(Proposition 8.1.7 of [55]) and the uniqueness of Eq. (23), we have pt = µt = Xt♯pT = TT→t♯pT
for t ∈ [0, T]. Again, since the uniqueness theorem with the given pT , we obtain ps = Tt→s♯pt for
any t ∈ [0, T] and s ∈ [0, t].

■

21

	Introduction
	CTM: An Unification of Score-based and Distillation Models
	Decoder Parametrization of Consistency Trajectory Models
	CTM Training
	Training Consistency Trajectory Models

	Sampling with CTM
	Experiments – Student (CTM) beats teacher (DM)
	Conclusion
	Related Works
	Theoretical Insights on CTM
	Convergence Analysis – Distillation from Teacher Models
	Accumulated Errors analysis in sampling.
	Training Details
	Evaluation Details

	Additional Generated Samples
	Theoretical Supports and Proofs
	Proof of Lemma 1
	Proof of Theorem ??
	Proof of Proposition 2
	Proof of Proposition 4
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??

