## [Re] FOCUS: Flexible and Optimizable Counterfactual Explanations for Tree Ensembles

## Kyosuke Morita

Heidelberg University





Conclusion

## Setup and Motivation

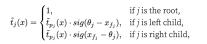
- Counterfactual explanations have been developed to cope with the idea of explaining a machine learning model algorithmically
- A counterfactual,  $\overline{x}$ , represents a perturbation of the input x within the framework of a tree-based binary classification model f
- The perturbation is designed to yield a divergent prediction such as  $f(x) \neq f(\overline{x})$

| Introduction | Experiments | Conclusion | References |
|--------------|-------------|------------|------------|
| ○●           | 00000       | O          | O          |
| FOCUS        |             |            |            |

- FOCUS [1] can be applied to non-differentiable models such as tree-based algorithms to generate counterfactual explanations
- This can be done by introducing a probabilistic model approximation  $sig(z) = (1 + exp(\sigma \cdot z))^{-1}$ , where  $\sigma \in \mathbb{R}_{>0}$

Approximated activation  $t_j(x)$  with sigmoid function

Decision tree with sigmoid functions approximation





This paper investigates:

- Whether FOCUS can generate counterfactuals for all instances
- If the mean distance between the original input x and generated counterfactuals  $\overline{x}$  is smaller than the existing method
- If FOCUS can perform well with other datasets rather than already tested ones
- How hyperparameters of FOCUS affect its performance

Experimental setup - Data and Evaluation

This paper applied FOCUS on the Decision Tree (DT), Random Forest (RF) and Adaptive Boosting (AB) model on 4 datasets and evaluated them with 4 distance metrics.

| Dataset      | Sample size | # of features | Positive class ratio |
|--------------|-------------|---------------|----------------------|
| Wine [2]     | 4,898       | 9             | 22%                  |
| HELOC [3]    | 10,459      | 23            | 48%                  |
| COMPAS [4]   | 6,172       | 6             | 48%                  |
| Shopping [5] | 12,330      | 9             | 15%                  |

The main findings are:

- FOCUS can find counterfactual explanations for all instances in the datasets
- There were slight deviations from the original paper in terms of the mean distances
- Yet, half of them outperformed the existing method's score

To examine the generality of FOCUS, this paper applied FOCUS on the German Credit dataset [6]. This paper found:

- FOCUS can find counterfactual explanations for all instances of the DT model
- This study was unable to run one experiment due to the large memory consumption

| Introduction              | Experiments | Conclusion | References |
|---------------------------|-------------|------------|------------|
| 00                        | 0000●       | O          | O          |
| Results - Hyperparameters |             |            |            |

This study found that the quality of model approximation has a significant effect on the performance of FOCUS.

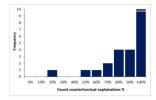
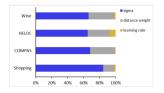


Figure: Found counterfactual explanations % on COMPAS dataset



## Figure: Hyperparameter importance for the 4 datasets

| Introduction | Experiments | Conclusion | References |
|--------------|-------------|------------|------------|
| 00           | 00000       | ●          | O          |
| Conclusion   |             |            |            |

- FOCUS can find counterfactuals for most instances across the experiments
- The majority of those counterfactuals have smaller distances than the existing method's counterfactual explanations
- The computational cost of FOCUS can be demanding, which leads to a run failure
- Hyperparameters, especially sigma have a significant effect on the performance of FOCUS

| Introduction | Experiments | Conclusion | References |
|--------------|-------------|------------|------------|
| 00           | 00000       | O          | ●          |
| References I |             |            |            |

- A. Lucic, H. Oosterhuis, H. Haned, and M. de Rijke, "Focus: Flexible optimizable counterfactual explanations for tree ensembles," in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 36, pp. 5313–5322, 2022.
- P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, "Modeling wine preferences by data mining from physicochemical properties," *Decision support systems*, vol. 47, no. 4, pp. 547–553, 2009.
- FICO2017, "Heloc dataset," 2017.
- D. Ofer, "Compas dataset," *Kaggle: https://www. kaggle. com/danofer/compass*, p. 19, 2017.
- C. O. Sakar, S. O. Polat, M. Katircioglu, and Y. Kastro, "Real-time prediction of online shoppers' purchasing intention using multilayer perceptron and lstm recurrent neural networks," *Neural Computing and Applications*, vol. 31, no. 10, pp. 6893–6908, 2019.
  - D. Dua and C. Graff, "UCI machine learning repository," 2017.