Valentin L. Buchner, Philip O.O. Schutte, Yassin Ben Allal, and Hamed Ahadi

[RE] Fairness Guarantees under Demographic Shift

NeurIPS 2023, Journal Track - ReScience C Vol. 9, Issue 2

UNIVERSITY OF AMSTERDAM

Context

- ML models are frequently biased
- Some models can guarantee to meet given fairness constraints
- However, these guarantees do not hold if demographics shift
- Shifty can guarantee fairness for
 - Known demographic shift
 - Unknown demographic shift

Source: Statistical Abstract 2009.

An example of demographic shift over time

Methodology

- Experiments reproduced with slight adjustments to code provided on GitHub
- Used same datasets (Brazil, Adult) and fairness definitions as original paper
- 80 hours runtime to run the experiments for the original paper

Results for reproducing the paper's claims

- Original paper only includes figures \rightarrow difficult to compare exact results
- We contribute by providing the raw results

	Known DS				Unknown DS			
	NSF	Acc	FR	Δ Acc	NSF	Acc	FR	ΔAcc
FairConst	n/a	0.782	1.000	-0.004	n/a	0.802	1.000	-0.009
RFLearn	n/a	0.787	1.000	0.000	n/a	0.823	1.000	0.005
Fairlearn	n/a	0.781	1.000	-0.001	n/a	0.842	1.000	0.007
Quasi-SC	0.520	0.762	0.417	0.111	0.600	0.767	0.500	0.139
Shifty	0.720	0.750^{1}	0.000	0.074	0.400	0.750 ²	0.000	0.167
SC	0.680	0.759	0.000	0.105	0.500	0.781	0.000	0.140

¹ significantly worse than best model, p < 0.001, t = 12.987, df = 30

² significantly worse than best model, p < 0.001, t = 32.561, df = 24

Scope of reproducibility

Main claims of authors:

- 1. "Shifty provides high-confidence guarantees under demographic shifts"
- 2. "Given sufficient data, no loss in accuracy compared to other models"
- 3. "Returns NSF if fairness constraints not met or too little data"
- 4. "Shifty is model agnostic"

Claim 1: "Shifty provides high-confidence guarantees under demographic shifts"

For known bounds:

Claim 1: "Shifty provides high-confidence guarantees under demographic shifts"

For unknown bounds:

Claim 2: "Given sufficient data, Shifty shows no loss in accuracy compared to other models"

For known bounds: 65.00% 75.00% Accuracy (Deployed) Accuracy (Deployed) 60.00% -70.00% 55.00% 50.00% 65.00% 20K 40K 60K 20K 40K 5 60K **Training Samples Training Samples Adult dataset Brazil dataset** Shifty ----- RFLearn ----- Seldonian ----- Quasi-Seldonian ----- Fairlearn Fairlearn

13 / 17

Claim 2: "Given sufficient data, Shifty shows no loss in accuracy compared to other models"

For unknown bounds:

Claim 3: "Shifty returns NSF if fairness constraints not met"

For unknown bounds:

Claim 4: "Shifty is model-agnostic"

- In theory true. In practice... not per se
- Original implementation only applies CMA-ES
 - This avoids backpropagation
 - However, this also requires more time, computational resources, and larger datasets

Space for methodological improvements

Using different classification and optimization methods for Shifty and baselines

makes comparison difficult

	Classification	Activation	Optimization
Seldonian	1 linear layer, no bias	sign function	SLSQP + CMA-ES
FairConst	1 linear layer, no bias	sign function	SLSQP
Fairlearn	linear SVC ¹	n/a	expgrad ²
RFLearn	1 linear layer with bias	softmax function	SGD ³
Shifty	1 linear layer, no bias	sign function	SLSQP + CMA-ES

¹ Support Vector Classifier

² exponentiated gradient reduction

³ Stochastic Gradient Descent

Results beyond the original paper

How does Shifty's performance change with the possible bounds of the demographic shift?

Conclusion

- Results can be approximately reproduced
- Validity of certain claims can be questioned
 - Difficult to compare Shifty and baselines due to differences in classification and optimization methods

