

Going Beyond Persistent Homology Using Persistent Homology

Johanna Immonen

University of Helsinki

Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023)

Amauri Souza

Aalto University Federal Institute of Ceará

Vikas Garg

Aalto University YaiYai Ltd

Persistent homology (PH)

simplicial complexes (e.g., graphs).

Basic idea:

- 1) Obtain a **filtration** (i.e., sequence of sub-complexes) by applying a filtering function on simplices (elements of the original complex);
- Keep track of the appearance (birth) and disappearance (death) of topological features, obtaining the so-called **persistence diagrams**.

Among other applications, PH has been successfully employed as a feature extractor in many disciplines, such as Astrophysics, Computer Vision, and Bioinformatics.

An approach to extract detailed **topological features** (e.g., persistence of connected components or cycles) of

A simplicial complex.

Attributed graph

Colors/features Vertex-color Filtrations: Nested sequence of subgraphs $\emptyset = G^{(0)} \subseteq G^{(1)} \subseteq ... \subseteq G$ induced by $f: X \to (0,\infty)$

Edge-color Filtrations

Edge-colored graph

Δ	

Edge-color Filtrations

Filtration induced by: $\rightarrow 1 \rightarrow 2$

Δ	

Edge-color Filtrations

Filtration induced by: $\rightarrow 1 \rightarrow 2$

Δ	

Δ	

Edge-color Filtrations

Motivation

theoretical underpinnings of PH on graphs are less explored.

In this work, we want to answer two fundamental **open questions**: Q1: What is the expressive power of persistent homology (from color-based filtrations) on graphs? Q2: Can we design more expressive persistence diagrams?

Persistent homology has been used to **boost the predictive capabilities of** graph neural networks (GNNs).

However, while the expressivity of GNNs is well-understood (e.g., in terms of the Weisfeiler-Leman test), the

What is the expressive power of persistent homology on graphs?

An important notion: color-separating sets

Component-wise colors: The multiset comprising the set of colors of each connected component.

Component-wise colors: $\{\{\bigcirc,\bigcirc\},\{\bigcirc\},\{\bigcirc\}\}\}$

An important notion: color-separating sets

Component-wise colors: The multiset comprising the set of colors of each connected component.

A color-separating set for a pair of graphs (G, G') is a set of colors Q such that, if we remove Q from G and G', we obtain subgraphs with **distinct component-wise colors**.

Thus, $\{\bigcirc, \bigcirc\}$ is a color-separating set!

Theorem 1: On the power of vertex-color filtrations

We can obtain different vertex-color (0-dim) diagrams if and only if there is a color-separating set.

Can PH based on vertex-color filtrations distinguish these graphs?

Yes!!{(,)) is a color-separating set!

Another important notion: color-disconnecting sets

A color-disconnecting set for a pair of graphs (G, G') is a set of colors Q such that, if we remove edges of colors Q from G and G', we obtain subgraphs with **different number of connected components**.

Thus, $Q = \{ blue \}$ is a color-disconnecting set!

Theorem 2: On the power of edge-color filtrations

We can obtain different edge-color (0-dim) diagrams if and only if there is a color-disconnecting set.

Can PH based on edge-color filtrations distinguish these graphs?

Yes!! $Q = \{ blue \}$ is a color-disconnecting set!

10

Theorem 3: Vertex-color vs. edge-color filtrations

There exist non-isomorphic graphs that verte filtrations cannot, and vice-versa.

Vertex-color succeeds

Edge-color **fails**

There exist non-isomorphic graphs that vertex-color filtrations can distinguish but edge-color

Vertex-color **fails**

Edge-color succeeds

Can we design more expressive persistence diagrams?

12

Rephine (Refining PH by Incorporating Node-color into Edge-based filtration)

Idea: Given independent vertex- and edge-color filtration functions (f_v, f_e) , we augment persistence diagrams from edge-color filtrations with vertex-color information.

Original birth and death time (from edge-color filtration)

Independent vertex-color filtration function.

13

- (0, ,1,2)
- (0, , 1, 1)
- (0,1,3,1)
- (0, 2, 2, 2)
- (0,2,2,2)

Theorem 4: RePHINE vs color-based diagrams

Two graphs that color-based **PH cannot** distinguish, but RePHINE can.

RePHINE is isomorphism invariant and is strictly more expressive than color-based PH.

Combining RePHINE and GNNs

16

Results on real-world data

We process the persistence diagrams using DeepSets and combine the resulting vectors with GNN embeddings.

Table 1: Predictive performance on graph classification. We denote in bold the best results. For ZINC, lower is better. For most datasets, RePHINE is the best-performing method.

GNN	Diagram	NCI109 ↑	PROTEINS ↑	IMDB-B↑	NCI1 ↑	MOLHIV \uparrow	ZINC \downarrow
GCN	- PH RePHINE	$\begin{array}{c} 76.46 \pm 1.03 \\ 77.92 \pm 1.89 \\ \textbf{79.18} \pm 1.97 \end{array}$	$\begin{array}{l} 70.18 \pm 1.35 \\ 69.46 \pm 1.83 \\ \textbf{71.25} \pm 1.60 \end{array}$	64.20 ± 1.30 64.80 ± 1.30 69.40 ± 3.78	$\begin{array}{l} 74.45 \pm 1.05 \\ 79.08 \pm 1.06 \\ \textbf{80.44} \pm 0.94 \end{array}$	$\begin{array}{l} 74.99 \pm 1.09 \\ 73.64 \pm 1.29 \\ \textbf{75.98} \pm 1.80 \end{array}$	$\begin{array}{c} 0.875 \pm 0.009 \\ 0.513 \pm 0.014 \\ \textbf{0.468} \pm 0.011 \end{array}$
GIN	- PH RePHINE	$\begin{array}{l} 76.90 \pm 0.80 \\ 78.35 \pm 0.68 \\ \textbf{79.23} \pm 1.67 \end{array}$	$\begin{array}{l} \textbf{72.50} \pm 2.31 \\ \textbf{69.46} \pm 2.48 \\ \textbf{72.32} \pm 1.89 \end{array}$	$\begin{array}{l} \textbf{74.20} \pm 1.30 \\ \textbf{69.80} \pm \textbf{0.84} \\ \textbf{72.80} \pm \textbf{2.95} \end{array}$	$\begin{array}{l} 76.89 \pm 1.75 \\ 79.12 \pm 1.23 \\ \textbf{80.92} \pm 1.92 \end{array}$	$\begin{array}{c} 70.76 \pm 2.46 \\ 73.37 \pm 4.36 \\ \textbf{73.71} \pm 0.91 \end{array}$	$\begin{array}{c} 0.621 \pm 0.015 \\ 0.440 \pm 0.019 \\ \textbf{0.411} \pm 0.015 \end{array}$

17

Wanna know more?

Visit our poster: **#629** Thu 14 Dec 10:45 a.m. CST

Code: www.github.com/Aalto-QuML/rephine

Johanna Immonen johanna.x.immonen@helsinki.fi

Theoretical contributions of this work			
On vertex-level filtrations (Section 2 and Section 3.1):			
Inconsistency issues due to injective vertex filtrations	Lemma 1		
Real holes $(d = \infty) \cong$ Component-wise colors	Lemma 2		
Almost holes $(b \neq d, d \neq \infty) \cong$ Separating sets	Lemma 3		
Distinct almost holes \Rightarrow Color-separating set	Lemma 4		
Birth time of persistence tuples \cong Vertex color	Lemma 5		
The expressive power of vertex-color filtrations	Theorem 1		
On edge-level filtrations (Section 3.2):			
Almost holes \cong Disconnecting sets	Lemma 6		
Reconstruction of disconnecting sets	Lemma 7		
The expressive power of edge-color filtrations	Theorem 2		
Vertex-level vs. edge-level filtrations (Section 3.3):			
Vertex-level persistence $ earrow$ edge-level persistence, and vice-versa	Theorem 3		
New method (RePHINE) (Section 4):			
RePHINE is isomorphism invariant	Theorem 4		
RePHINE \succ vertex-, edge-, and vertex- \cup edge-level diagrams	Theorem 5		

Amauri H. Souza amauri.souza@aalto.fi

X @amaurihsouza

Vikas Garg vgarg@csail.mit.edu

X @montsgarg

18