

How to Turn Your Knowledge Graph Embeddings into Generative Models

Lorenzo Loconte

University of Edinburgh, UK

Nicola Di Mauro University of Bari, Italy **Robert Peharz** TU Graz, Austria Antonio Vergari University of Edinburgh, UK

NeurIPS 2023 Oral

Knowledge graphs

Pan et al., "Unifying Large Language Models and Knowledge Graphs: A Roadmap", 2023

Gogleva et al., "Knowledge Graph-based Recommendation Framework Identifies [...] Resistance in [...] Cell Lung Cancer", 2021

Guo et al., "A Survey on Knowledge Graph-Based Recommender Systems", 2020

 $\langle loxoprofen, treats, pain \rangle$ $\langle ibuprofen, treats, pain \rangle$

$$\label{eq:cox2} \begin{split} &\langle \text{COX2}, \text{regulates}, \text{P-prostacyclin} \rangle \\ &\langle \text{ibuprofen}, \text{interacts}, \text{COX2} \rangle \end{split}$$

Walsh, Mohamed, and Novácek, "BioKG: A Knowledge Graph for Relational Learning On Biological Data", 2020

$$\label{eq:locoprofent} \begin{split} &\langle \mathsf{loxoprofen}, \mathsf{treats}, \mathsf{pain} \rangle \\ &\langle \mathsf{ibuprofen}, \mathsf{treats}, \mathsf{pain} \rangle \end{split}$$

 $\langle COX2, regulates, P-prostacyclin \rangle$ $\langle ibuprofen, interacts, COX2 \rangle$

 $\mathbf{Q}: \langle \mathsf{loxoprofen}, \mathsf{interacts}, \mathbf{?} \rangle$

Walsh, Mohamed, and Novácek, "BioKG: A Knowledge Graph for Relational Learning On Biological Data", 2020

Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction

2,142 Citations

Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard • Published in International Conference on... 19 June 2016 •

Highly Influential Citations (1) 576

Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction

2,142 Citations

Théo Trouillon, Johannes Welbi, +2 authors Guillaume Bouchard • Published in International Conference on... 19 June 2016 •

Highly Influential Citations (1) 576

$$\phi_{\mathsf{Complex}}(s,r,o) := f(\mathbf{e}_s,\mathbf{w}_r,\mathbf{e}_o) \in \mathbb{R} \qquad \mathbf{e}_s,\mathbf{w}_r,\mathbf{e}_o \in \mathbb{C}^d$$

:

Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction

Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard • Published in International Conference on... 19 June 2016 •

2,142 Citations Highly Influential Citations **1** 576

$$\phi_{\mathsf{ComplEx}}(s,r,o) := f(\mathbf{e}_s,\mathbf{w}_r,\mathbf{e}_o) \in \mathbb{R} \qquad \mathbf{e}_s,\mathbf{w}_r,\mathbf{e}_o \in \mathbb{C}^d$$

 $\begin{array}{lll} 1^{\rm st} & \phi_{\rm ComplEx}({\rm loxoprofen, interacts}, {\rm phosp-acid}) & = & {\bf 2.3} \Leftarrow \\ 2^{\rm nd} & \phi_{\rm ComplEx}({\rm loxoprofen, interacts}, {\rm COX2}) & = & 1.3 \end{array}$

... are difficult to interpret and compare

Arakelyan, Minervini, and Augenstein, <u>Adapting Neural Link Predictors for Complex Query Answering</u>, 2023 Zhu et al., "A Closer Look at Probability Calibration of Knowledge Graph Embedding", 2023

We would like *probabilities* instead !

How to measure the confidence of predictions?

and compare / combine scores

- $\mathbf{Q} \colon \langle \mathsf{loxoprofen}, \mathsf{interacts}, \textbf{?} \rangle$
- $\mathbf{A} \colon \langle \mathsf{loxoprofen}, \mathsf{interacts}, \textbf{phosp-acid} \rangle$

 $\mathbf{Q} \colon \langle \mathsf{loxoprofen}, \mathsf{interacts}, \textbf{?} \rangle$

 $\mathbf{A} : \ \langle \mathsf{loxoprofen}, \mathsf{interacts}, \mathbf{phosp-acid} \rangle$

" interacts " can only hold between *drugs* and *proteins*

How to measure the confidence of predictions ?

and compare / combine scores

such as domain knowledge

Training is expensive

Vrandecić and Krötzsch, "Wikidata: a free collaborative knowledgebase", 2014

How to measure the confidence of predictions ?

and compare / combine scores

II How to guarantee the satisfaction of constraints ? such as domain knowledge

How to scale to KGs with millions of entities ?

and be memory efficient

Generative models of triples (GeKCs)

calibrated probabilistic predictions, sampling of new triples

From KGE models ...

Lacroix, Usunier, and Obozinski, "Canonical Tensor Decomposition for Knowledge Base Completion", 2018 Nickel, Tresp, and Kriegel, "A Three-Way Model for Collective Learning on Multi-Relational Data", 2011 Balazevic, Allen, and Hospedales, "TuckER: Tensor Factorization for Knowledge Graph Completion", 2019

From KGE models to circuits ...

Lacroix, Usunier, and Obozinski, "Canonical Tensor Decomposition for Knowledge Base Completion", 2018 Nickel, Tresp, and Kriegel, "A Three-Way Model for Collective Learning on Multi-Relational Data", 2011 Balazevic, Allen, and Hospedales, "TuckER: Tensor Factorization for Knowledge Graph Completion", 2019

From KGE models to circuits ...

From scores $\phi(s,r,o)$ to triple probabilities p(s,r,o)

Choi, Vergari, and Broeck, "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

1. Ensure
$$\phi(s, r, o) \ge 0$$
, $p(s, r, o) = \frac{1}{Z} \cdot \phi(s, r, o)$

Choi, Vergari, and Broeck, "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

GeKCs Non-negative restriction

Enforce non-negative embeddings

 \implies Less accurate on link prediction ...

Choi, Vergari, and Broeck, "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

Square score functions (unrestricted embeddings)

 \implies Competitive on link prediction !

Choi, Vergari, and Broeck, "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

1. Ensure
$$\phi(s, r, o) \ge 0$$
, $p(s, r, o) = \frac{1}{Z} \cdot \phi(s, r, o)$
2. Computation of $Z = \sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} \phi(s, r, o)$

Choi, Vergari, and Broeck, "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

$$Z = \sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} \phi_{\mathsf{ComplEx}^{+}}(s, r, o)$$

The summation over triples computing $Z \dots$

The summation over triples computing Z ...

... can be pushed

$$Z = \sum_{i=1}^{d} \operatorname{Re} \left[\left(\sum_{s \in \mathcal{E}} \mathbf{e}_{si} \right) \times \left(\sum_{r \in \mathcal{R}} \mathbf{w}_{ri} \right) \times \left(\sum_{o \in \mathcal{E}} \overline{\mathbf{e}_{oi}} \right) \right]$$

... and broken down ...

... thus requiring linear time !

Generative models for KGs (GeKCs)

calibrated probabilistic predictions, sampling of new triples

such as the domain schema

- $\mathbf{Q}: \langle \mathsf{loxoprofen}, \mathsf{interacts}, \mathbf{?} \rangle$
- A: $\langle loxoprofen, interacts, phosp-acid \rangle$

" interacts " can only hold between *drugs* and *proteins*

p(**loxoprofen**, interacts, **phosp-acid**) = 0

- $\mathbf{Q} \colon \ \langle \text{loxoprofen}, \text{interacts}, \textbf{?} \rangle$
- $\mathbf{A} \colon \ \langle \mathsf{loxoprofen}, \mathsf{interacts}, \mathbf{COX2} \rangle$

" interacts " can only hold between *drugs* and *proteins*

p(**loxoprofen**, interacts, **phosp-acid**) = 0p(**loxoprofen**, interacts, **COX2**) > 0

Logical constraints 🕂 GeKCs

Ahmed et al., "Semantic probabilistic layers for neuro-symbolic learning", 2022

I

Generative models for KGs (GeKCs)

calibrated probabilistic predictions, sampling of new triples

II Integrate constraints with guarantees

such as the domain schema

Ш

Scale to KGs with millions of entities and triples

speed-up training and save memory

Speed-up training on large KGs

Speed-up training on large KGs

... by discriminative objectives, generalised as a weighted *pseudo-log-likelihood*

$$\mathcal{L}_{\mathsf{PLL}} := \sum_{(s,r,o) \in \mathcal{D}} w_s \log p(s \mid r, o) + w_r \log p(r \mid s, o) + w_o \log p(o \mid s, r)$$

Ruffinelli, Broscheit, and Gemulla, "You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings", 2020 Chen et al., "Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations", 2021

... by discriminative objectives, generalised as a weighted *pseudo-log-likelihood*

$$\mathcal{L}_{\mathsf{PLL}} := \sum_{(s,r,o) \in \mathcal{D}} w_s \log p(s \mid r, o) + w_r \log p(r \mid s, o) + w_o \log p(o \mid s, r)$$

... by *maximum-log-likelihood* estimation

$$\mathcal{L}_{\mathsf{MLE}} := \sum_{(s,r,o)\in\mathcal{D}} \log p(s,r,o) = -|\mathcal{D}| \log \mathbb{Z} + \sum_{(s,r,o)\in\mathcal{D}} \log \phi_{\mathsf{pc}}(s,r,o)$$

21

Ruffinelli, Broscheit, and Gemulla, "You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings", 2020 Chen et al., "Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations", 2021

Model	FB15k-237	WN18RR	ogbl-biokg			
СР	0.310	0.105	0.831			
CP^+	0.237	0.027	0.496			
CP ²	0.315	0.104	0.848			
ComplEx	0.342	0.471	0.829			
$ComplEx^+$	0.214	0.030	0.503			
ComplEx ²	0.334	0.420	0.858			

Mean Reciprocal Rank (MRR) \uparrow

Model	FB15k-237	WN18RR	ogbl-biokg				
CP	0.310	0.105	0.831				
CP^+	0.237	0.027	0.496				
CP ²	0.315	0.104	0.848				
ComplEx	0.342	0.471	0.829				
$ComplEx^+$	0.214	0.030	0.503				
ComplEx ²	0.334	0.420	0.858				

Mean Reciprocal Rank (MRR) \uparrow

GeKCs are competitive with KGE models ...

Mean Rec	iprocal kank		
Model	FB15k-237	WN18RR	ogbl-biokg
СР	0.310	0.105	0.831
CP^+	0.237	0.027 🔇	0.496
CP ²	0.315	0.104	0.848
ComplEx	0.342	0.471	0.829
ComplEx⁺	0.214	0.030 🔇	0.503
ComplEx ²	0.334	0.420	0.858

Mean Reciprocal Rank (MRR) \uparrow

... and achieve the best results on ogbl-biokg

Kernel triple distance to measure their quality

Kernel triple distance to measure their quality

Empirical KTD \downarrow

Model	FB15k-237		WN18RR		ogbl-biokg	
Uniform	0.5	589	0.766		1.822	
	PLL	MLE	PLL MLE		PLL	MLE
ComplEx ²	0.326	0.102	0.338	0.278	0.104	0.034

A generative perspective of KGE models (GeKCs)

II Reliable predictions with logical constraints

Speed-up training and reduce costs

Takeaways

A generative perspective of KGE models (GeKCs)

II Reliable predictions with logical constraints

Speed-up training and reduce costs

more on circuits

A. Vergari, Y. Choi, and R. Peharz *Probabilistic Circuits: representations, inference, learning and applications* Tutorial @ NeurIPS 2022

Z. Yu, M. Trapp and K. Kersting Characteristic circuits Oral @ NeurIPS 2023 Takeaways

Reliable predictions with logical constraints

about probabilities, reasoning, integrals & logic

Poster Session 1 #1205 Paper

> ∑ @loreloc_

Ш

Ш

Speed-up training and reduce costs

Link prediction benchmarks

Mean Reciprocal Rank (MRR) \uparrow

Model	FB15	FB15k-237		L8RR	ogbl-biokg	
	PLL	PLL MLE PLL MLE		MLE	PLL	MLE
СР	0.310	_	0.105	_	0.831	_
CP^+	0.237	0.230	0.027	0.026	0.496	0.501
CP ²	0.315	0.282	0.104	0.091	0.848	0.829
ComplEx	0.342	_	0.471	_	0.829	_
$ComplEx^+$	0.214	0.205	0.030	0.029	0.503	0.516
ComplEx ²	0.334	0.300	0.420	0.391	0.858	0.840

Instantiate GeKCs from KGE models

Mean Reciprocal Rank (MRR) \uparrow

Model	FB15k-237		WN1	l8RR	ogbl-biokg	
	PLL	MLE	PLL	MLE	PLL	MLE
ComplEx	0.344	_	0.470	_	0.829	_
$\begin{array}{c} \text{ComplEx}^2 \\ \text{ComplEx}^2 \star \end{array}$	0.333 0.342	0.301 0.340	0.416 0.462	0.390 0.463	0.859 0.859	0.839 0.828

Semantic consistency scores

	Model	k	Embedding size			
	Μοαει κ	10	50	200	1000	
		1	99.68	99.90	99.93	99.94
	ComplEx	20	99.81	99.79	99.85	99.91
Sem@ k scores \uparrow	·	100	99.60	99.44	99.60	99.77
	ComplEx ²	1	82.50	94.22	99.30	99.50
		20	86.50	96.70	99.42	99.64
		100	90.66	97.71	99.23	98.78
	D-ComplEx ²	1 ² 20	100.00 100.00	100.00 100.00	100.00 100.00	100.00 100.00
		100	100.00	100.00	100.00	100.00

Logical constraints improve small GeKCs

