How to Turn Your

Knowledge Graph Embeddings

 into Generative Models
Lorenzo Loconte

University of Edinburgh, UK

Nicola Di Mauro
University of Bari, Italy

Robert Peharz
TU Graz, Austria

Antonio Vergari
University of Edinburgh, UK

Knowledge graphs

Augment LLMs

Guo et al., "A Survey on Knowledge Graph-Based Recommender Systems", 2020
Pan et al., "Unifying Large Language Models and Knowledge Graphs: A Roadmap", 2023
Gogleva et al., "Knowledge Graph-based Recommendation Framework Identifies [...] Resistance in [...] Cell Lung Cancer", 2021

〈loxoprofen，treats，pain〉
〈ibuprofen，treats，pain〉
\vdots
〈COX2，regulates，P－prostacyclin〉〈ibuprofen，interacts，COX2〉
－Drugs
－Symptoms
－Proteins
－Functions

〈loxoprofen，treats，pain〉〈ibuprofen，treats，pain〉 \vdots

〈COX2，regulates，P－prostacyclin〉〈ibuprofen，interacts，COX2〉
$\mathrm{Q}:\langle$ loxoprofen，interacts，？\rangle
－Drugs
－Symptoms
－Proteins
－Functions

KGE models

Knowledge graph embeddings (KGE) models such as ...
Complex Embeddings for Simple Link Prediction 2,142 Citations
Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard • Published in International Conference on... 19 June 2016 •

KGE models

Knowledge graph embeddings (KGE) models such as ...
Complex Embeddings for Simple Link Prediction 2,142 Citations
Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard • Published in International Conference on... 19 June 2016 •

$$
\phi_{\mathrm{ComplEx}}(s, r, o):=f\left(\mathbf{e}_{s}, \mathbf{w}_{r}, \mathbf{e}_{o}\right) \in \mathbb{R} \quad \mathbf{e}_{s}, \mathbf{w}_{r}, \mathbf{e}_{o} \in \mathbb{C}^{d}
$$

KGE models

Knowledge graph embeddings (KGE) models such as ...
Complex Embeddings for Simple Link Prediction 2,142 Citations
Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard • Published in International Conference on... 19 June 2016 •

$$
\begin{array}{lll}
\phi_{\text {ComplEx }}(s, r, o):=f\left(\mathbf{e}_{s}, \mathbf{w}_{r}, \mathbf{e}_{o}\right) \in \mathbb{R} & \mathbf{e}_{s}, \mathbf{w}_{r}, \mathbf{e}_{o} \in \mathbb{C}^{d} \\
1^{\text {st }} & \phi_{\text {ComplEx }}(\text { loxoprofen, interacts, phosp-acid }) & =2.3 \Longleftarrow \\
2^{\text {nd }} & \phi_{\text {Complex }}(\text { loxoprofen, interacts, COX2 }) & =1.3
\end{array}
$$

Scores ...

... are difficult to interpret and compare

Arakelyan, Minervini, and Augenstein, Adapting Neural Link Predictors for Complex Query Answering, 2023

Scores ...

We would like probabilities instead !

Issues?

I How to measure the confidence of predictions?
and compare / combine scores

Q：〈loxoprofen，interacts，？〉
 A：〈loxoprofen，interacts，phosp－acid〉

 ＂interacts＂can only hold between drugs and proteins

－Drugs
－Proteins
－Functions

Issues?

I How to measure the confidence of predictions?
and compare / combine scores

II How to guarantee the satisfaction of constraints ?
such as domain knowledge

Training is expensive

WIKIDATA $107 \cdot 10^{6}$ entities

Issues?

I How to measure the confidence of predictions?
and compare / combine scores

II How to guarantee the satisfaction of constraints?
such as domain knowledge

III How to scale to KGs with millions of entities ?
and be memory efficient

Solutions!

I Generative models of triples (GeKCs)
calibrated probabilistic predictions, sampling of new triples

From KGE models ...

Lacroix, Usunier, and Obozinski, "Canonical Tensor Decomposition for Knowledge Base Completion", 2018
Nickel, Tresp, and Kriegel, "A Three-Way Model for Collective Learning on Multi-Relational Data", 2011
Balazevic, Allen, and Hospedales, "TuckER: Tensor Factorization for Knowledge Graph Completion", 2019

From KGE models to circuits

Lacroix, Usunier, and Obozinski, "Canonical Tensor Decomposition for Knowledge Base Completion", 2018 Nickel, Tresp, and Kriegel, "A Three-Way Model for Collective Learning on Multi-Relational Data", 2011 Balazevic, Allen, and Hospedales, "TuckER: Tensor Factorization for Knowledge Graph Completion", 2019

From KGE models to circuits ...

... to probabilistic circuits

From scores $\phi(s, r, o)$ to triple probabilities $p(s, r, o)$

... to probabilistic circuits

1. $\operatorname{Ensure} \phi(s, r, o) \geq 0, \quad p(s, r, o)=\frac{1}{Z} \cdot \phi(s, r, o)$

... to probabilistic circuits

GeKCs

\because Non-negative restriction

Enforce non-negative embeddings

\Longrightarrow Less accurate on link prediction ...

... to probabilistic circuits

GeKCs

\because Non-negative restriction

S Squaring

Square score functions (unrestricted embeddings)

\Longrightarrow Competitive on link prediction !

... to probabilistic circuits

GeKCs

\because Non-negative restriction

S Squaring

1. Ensure $\phi(s, r, o) \geq 0, \quad p(s, r, o)=\frac{1}{Z} \cdot \phi(s, r, o)$
2. Computation of $Z=\sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} \phi(s, r, o)$

$$
Z=\sum_{s \in \mathcal{E},} \phi_{r \in \mathcal{R}, o \in \mathcal{E}} \text { ComplEx+ }(s, r, o)
$$

The summation over triples computing Z...

$$
Z=\sum_{s \in \mathcal{E}, r \in \mathcal{R},} \sum_{o \in \mathcal{E}}^{d} \operatorname{Re}\left(\mathbf{e}_{s i} \mathbf{w}_{r i} \overline{\mathbf{e}_{o i}}\right)
$$

The summation over triples computing Z...

$$
Z=\sum_{i=1}^{d} \sum_{\text {... can be pushed } \ldots, \ldots} \operatorname{Re}\left(\mathbf{e}_{s i} \mathbf{w}_{r i} \overline{\mathbf{e}_{o i}}\right)
$$

... and broken down ...

... thus requiring linear time!

Solutions!

I Generative models for KGs (GeKCs)
calibrated probabilistic predictions, sampling of new triples

II Integrate constraints with guarantees
such as the domain schema

Q：〈loxoprofen，interacts，？〉
A：〈loxoprofen，interacts，phosp－acid〉
 between drugs and proteins
－Drugs
－Symptoms
$p($ loxoprofen, interacts，phosp－acid $)=0$

－Drugs
－Proteins
－Symptoms
－Functions

Q：〈loxoprofen，interacts，？〉
A：〈loxoprofen，interacts，COX2〉

＂interacts＂can only hold between drugs and proteins

$p($ loxoprofen, interacts，phosp－acid $)=0$ $p($ loxoprofen，interacts，COX2）>0

$$
S \in \mathrm{Ds} R=\mathrm{int} O \in \mathrm{Ps}
$$

$p_{K}(\square$
loxoprofen, interacts, phosp-acid) $=0$

Logical constraints \ddagger

Solutions!

I Generative models for KGs (GeKCs)
calibrated probabilistic predictions, sampling of new triples

II Integrate constraints with guarantees
such as the domain schema

III Scale to KGs with millions of entities and triples

speed-up training and save memory

Speed-up training on Iarge KGs

Speed-up training on Iarge KGs

Learning ...

... by discriminative objectives, generalised as a weighted pseudo-log-likelihood

$$
\mathcal{L}_{\text {PLL }}:=\sum_{(s, r, o) \in \mathcal{D}} w_{s} \log p(s \mid r, o)+w_{r} \log p(r \mid s, o)+w_{o} \log p(o \mid s, r)
$$

Learning ...

... by discriminative objectives, generalised as a weighted pseudo-log-likelihood

$$
\mathcal{L}_{\text {PLL }}:=\sum_{(s, r, o) \in \mathcal{D}} w_{s} \log p(s \mid r, o)+w_{r} \log p(r \mid s, o)+w_{o} \log p(o \mid s, r)
$$

... by maximum-log-likelihood estimation

$$
\mathcal{L}_{\text {MLE }}:=\sum_{(s, r, o) \in \mathcal{D}} \log p(s, r, o)=-|\mathcal{D}| \log Z+\sum_{(s, r, o) \in \mathcal{D}} \log \phi_{\mathrm{pc}}(s, r, o)
$$

Mean Reciprocal Rank (MRR) \uparrow

Model	FB15k-237	WN18RR	ogbl-biokg
CP	0.310	$\mathbf{0 . 1 0 5}$	0.831
CP^{+}	0.237	0.027	0.496
CP^{2}	$\mathbf{0 . 3 1 5}$	$\mathbf{0 . 1 0 4}$	$\mathbf{0 . 8 4 8}$
ComplEx $^{\text {ComplEx }}$	$\mathbf{0 . 3 4 2}$	$\mathbf{0 . 4 7 1}$	0.829
ComplEx 2	0.214	0.030	0.503

Mean Reciprocal Rank (MRR) \uparrow

Model	FB15k-237	WN18RR	ogbl-biokg
CP	0.310	$\mathbf{0 . 1 0 5}$	0.831
CP^{+}	0.237	0.027	0.496
CP^{2}	$\mathbf{0 . 3 1 5}$	$\mathbf{0 . 1 0 4}$	$\mathbf{0 . 8 4 8}$
ComplEx 2	$\mathbf{0 . 3 4 2}$	$\mathbf{0 . 4 7 1}$	0.829
ComplEx $^{+}$	0.214	0.030	0.503
ComplEx 2	0.334	0.420	$\mathbf{0 . 8 5 8}$

GeKCs are competitive with KGE models ...

Mean Reciprocal Rank (MRR) 个

Model	FB15k-237	WN18RR	ogbl-biokg
CP	0.310	$\mathbf{0 . 1 0 5}$	0.831
CP^{+}	0.237	0.027	0.496
CP^{2}	$\mathbf{0 . 3 1 5}$	$\mathbf{0 . 1 0 4}$	$\mathbf{0 . 8 4 8}$
ComplEx	$\mathbf{0 . 3 4 2}$	$\mathbf{0 . 4 7 1}$	0.829
ComplEx $^{+}$	0.214	0.030	0.503
ComplEx 2	0.334	0.420	$\mathbf{0 . 8 5 8}$

... and achieve the best results on ogbl-biokg

Sampling triples

Kernel triple distance to measure their quality

Sampling triples

Kernel triple distance to measure their quality

Model	FB15k-237		WN18RR		ogbl-biokg	
Uniform	0.589		0.766		1.822	
	PLL	MLE	PLL	MLE	PLL	MLE
ComplEx ${ }^{2}$	0.326	0.102	0.338	0.278	0.104	0.034

Takeaways

I A generative perspective of KGE models (GeKCs)

II Reliable predictions
with logical constraints

III Speed-up training
and reduce costs

Takeaways

more on circuits

I A generative perspective of KGE models (GeKCs)

II Reliable predictions with logical constraints

III Speed-up training

 and reduce costsA. Vergari, Y. Choi, and R. Peharz Probabilistic Circuits: representations, inference, learning and applications Tutorial @ NeurIPS 2022
Z. Yu, M. Trapp and K. Kersting Characteristic circuits
Oral @ NeurIPS 2023

Takeaways

I A generative perspective of KGE models（GeKCs）

II Reliable predictions with logical constraints

III Speed－up training

 and reduce costsabout
probabilities， reasoning， integrals \＆ Iogic

Poster Session 1 \＃1205

	口抍可		Q
Paper		Code	

Link prediction benchmarks

Mean Reciprocal Rank (MRR) \uparrow

Model	FB15k-237		WN18RR		ogbl-biokg	
	PLL	MLE	PLL	MLE	PLL	MLE
CP	0.310	-	0.105	-	0.831	-
CP^{+}	0.237	0.230	0.027	0.026	0.496	0.501
$C P^{2}$	0.315	0.282	0.104	0.091	0.848	0.829
ComplEx	0.342	-	0.471	-	0.829	-
ComplEx ${ }^{+}$	0.214	0.205	0.030	0.029	0.503	0.516
ComplEx ${ }^{2}$	0.334	0.300	0.420	0.391	0.858	0.840

Instantiate GeKCs from KGE models

Mean Reciprocal Rank (MRR) \uparrow

Model	FB15k-237			WN18RR			ogbl-biokg	
	PLL	MLE		PLL	MLE		PLL	MLE
ComplEx	$\mathbf{0 . 3 4 4}$	-		$\mathbf{0 . 4 7 0}$	-		0.829	-
ComplEx 2	0.333	0.301		0.416	0.390		0.859	0.839
ComplEx $^{2} \star$	$\mathbf{0 . 3 4 2}$	$\mathbf{0 . 3 4 0}$	$\mathbf{0 . 4 6 2}$	$\mathbf{0 . 4 6 3}$		0.859	0.828	

Semantic consistency scores

Model	k	Embedding size				
	k	10	50	200	1000	
	1	99.68	99.90	99.93	99.94	
ComplEx	20	99.81	99.79	99.85	99.91	
	100	99.60	99.44	99.60	99.77	
	1	82.50	94.22	99.30	99.50	
ComplEx 2	20	86.50	96.70	99.42	99.64	
	100	90.66	97.71	99.23	98.78	
	1	$\mathbf{1 0 0 . 0 0}$				
	D-ComplEx					
	20	$\mathbf{1 0 0 . 0 0}$				
	100	$\mathbf{1 0 0 . 0 0}$				

Logical constraints improve small GeKCs

