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Why does reasoning work?
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• We can enhance our inferences by working through 
a series of steps 

• But that doesn’t give us any new data 

• So how does it make our inferences better?



Let’s think step by step
• We can get language models to do 

better on lots of tasks by “chain-of-
thought” prompting
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(Wei et al., 2022)

(Kojima et al., 2022)



The “step to rationality”
• Shepard (2008): thought 

experiments let us apply 
internalized intuitive 
knowledge of principles and 
symmetries 

• Do heavier objects fall faster?
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Our hypothesis

Step-by-step reasoning lets (humans/LMs) chain 
together local inferences between variables they have 
seen together a lot in order to support longer-distance 

inferences
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A B C

P(C |A) = ∑
B

P(C |B)P(B |A)



Probabilistic inference as language modeling

• We can just write a sample from 
a Bayes net as a string 

• All variables are Boolean-
valued
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Estimating using a trained model
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Reasoning as free generation
• Run the model forward, generating 

names and values for intermediate 
variables 

• Compute the probability of the 
target variable when the model 
generates its name 

• Resample intermediate variables / 
values 10 times, averaging 
probabilities

8

target: X5

X1=0 
X4=1 
X5=

target: X5

X1=0 
X2=0 
X3=1 
X5=

target: X5

X1=0 
X3=1 
X4=1

X2=0 
X5=

Average probabilities

target: X5

X1=0

Initial prompt

Observed Variable



What training conditions lead free 
generation to outperform direct 
prediction?
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Generating the training data
• We randomly generate 

Bayes nets 

• 100 nodes 

• 100 random edges 

• Conditional probability 
tables
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Holding out pairs
• We select pairs of variables to never co-occur with each other in training 

• Distance at least two 

• High mutual information 

• All training conditions use the same set of held-out pairs 

• Key metric: how well can a trained language model infer conditional 
probabilities for held-out pairs? (MSE)
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Training data - local neighborhoods
• Each training sample includes only a local neighborhood of size k 
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∼ Geom(0.5)



Training data - variable dropout
• We remove a random subset of the variables in the local neighborhood
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Training
• Concatenate 1 million samples, showing only the selected variables 

• 10 different Bayes nets, separate transformer for each 

• 300k gradient steps
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The reasoning gap emerges over training
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An alternative estimator: scaffolded generation
• We generate the smallest set of variables that d-separate the observed and target variables 

• Ordered from closest to the observed variable to farthest (in practice they’re generally 
1-2 variables)
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Using scaffolds
• Sample the values of the scaffold 

variables, then get the target variable 
probability 

• Resample 10 scaffolds
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Controls
Training Conditions 

• Fully-observed: complete samples from the Bayes net (except for held-out 
pairs) 

• Wrong local neighborhood: local neighborhoods from a Bayes net other than 
the one the samples are drawn from
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Estimators 

• Negative scaffolded generation: reason through random variables that are not 
in the scaffold



Comparison across all training conditions /estimators
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Falling back on the marginal
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Conclusions
• Reasoning through intermediate variables improves estimation when data is 

structured locally 

• Locally structured data + reasoning might help explain the gap in data efficiency 
between humans and machine learning models
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