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Problem and parameterization

Policy optimization:

Softmax + low-dimensional feature (“log-linear policies”):

Used in practice but hard to analyze

● non-concave maximization (softmax transform)
● not realizable if              (                                  , and        not equal               )
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Softmax Policy Gradient (PG); Natural Policy Gradient (NPG)
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Existing results

Problem:

Softmax PG: asymptotic global convergence (Agarwal et al., 2019) 

                     O(1/t) rate (Mei et al., 2020)

                     Poor constant dependence (Li et al., 2021)

                                  : impossible to achieve global convergence, exponentially 
many bad local maxima (Chen et al., 2020).



Existing results

Problem:

NPG:                  global convergence (Agarwal et al., 2019) 

                           rate (Khodadadia et al., 2021; Lan 2021; Xiao, 2022)

            

                                  : additive approximation error (Agarwal et al., 2019) 
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Finding 1: Softmax PG and NPG can achieve global convergence 
with non-zero approximation errors.

Question: Is non-zero approximation error useful for characterizing 
global convergence?
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Finding 2: Non-zero approximation errors does not characterize 
global convergence for both algorithms.



Examples

Proposition:

Bad initialization:                                       , using Softmax PG

                                                           , implying that                          .                 
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Findings

Finding 1: Softmax PG and NPG can achieve global convergence 
with non-zero approximation errors.

Finding 2: Non-zero approximation errors does not characterize 
global convergence for both algorithms.

Finding 3: Linear realizability (zero approximation error) does not 
imply global convergence for Softmax PG.

Question: What conditions characterize global convergence of 
Softmax PG and NPG in unrealizable problem?
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Softmax PG: 



Main Results (NPG)

NPG (sufficient and necessary):

 



Main Results (NPG)

NPG:

Intuition (using Example 1):

●

 



Softmax PG condition is sufficient but not necessary
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Softmax PG condition is sufficient but not necessary



Summary (ordering-based conditions)

NPG (sufficient and necessary): weaker than zero approximation error

Softmax PG (sufficient, not necessary): approximation error irrelevant



Future directions

General MDPs

Stochastic updates

Sufficient and necessary conditions

Representation learning

Transformers (softmax attention)

RLHF (preference-based data vs. ordering-based conditions)
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End

Thanks! Questions?


