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Protein Docking Neural EvolutionHyper Parameter Optimization

Applications of BBO
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gradients...

Traditional optimizer:
• Genetic algorithm
• evolutionary strategies
• particle swarm optimization
• differential evolution

Drawbacks:
lean on carefully hand-crafted designs 
to strike a balance between exploration 
and exploitation 

Black Box Optimization (BBO)



MetaBBO Formulation

MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning (NeurIPS 2023) 

Bi-level optimization framework

MetaBBO-RL model this bi-level optimization procedure as a 
Markov Decision Process (MDP):

MetaBBO-RL

RL 
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The objective of MetaBBO-RL is to learn an 
policy(RL agent) that maximizes the expectation 
of optimization performance on a task distribution: 𝐸!~#,%![#&'(
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Approach1: selecting operators
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e.g. Adaptively selecting mutation operators in DE
𝑥&*+ = 𝑥& + 𝐹 ∗ 𝑟𝑎𝑛𝑑1(𝑥&)

rand1 is selected from [rand1, rand2, cur2rand,  cur2gbest…]

e.g. Adaptively tuning parameters in PSO update rule

𝑥&*+ = 𝜔𝑣& + 𝑐+𝑟+ 𝑝𝑏𝑒𝑠𝑡& − 𝑥& + 𝑐,𝑟,(𝑔𝑏𝑒𝑠𝑡& − 𝑥&)

Approach3: Approach1 + Approach2

Approach4: directly determine the sample distribution

𝑥! 𝑥!"#RL 
Agent Distribution

sample

e.g. 𝑥&*+ = 𝑥& + 𝐹 ∗ 𝑟𝑎𝑛𝑑1(𝑥&)

e.g. 
𝜇, 𝜎 = 𝜃 𝑥&
𝑥&*+ = 𝑁(𝜇, 𝜎)

Current attempts of MetaBBO-RL



Limitations of Existing Benchmarks
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• Lack of template coding and automation for MetaBBO with RL algorithm
• Limited benchmark task instances and up-to-date baseline implementations
• Designed for only evaluating optimization performance, while the evaluation of learning 

effectiveness is omitted
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Blueprint of our MetaBox platform. 

Overview of MetaBox

Template scripts

Perfromance Metrics

Workflow automation

Broad Testsuites

Baseline Library

Visualization



Our Proposed MetaBox Platform
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To simplify the development of MetaBBO-
RL and ensure an automated workflow

1) MetaBBO-RL Template:
Two components: the meta-level RL 
agent and the low-level optimizer; 
unified interface protocol;

2) Automated Train-Test-Log procedure:
run_experiment() command
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To simplify the development of MetaBBO-RL and ensure an automated workflow

Template coding & workflow automation

MetaBBO-RL Template Workflow Automation
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To facilitate broad and standardized 
comparison studies

1) large-scale MetaBox testsuite:
over 300 benchmark problems with 
diverse landscape characteristics; 
inherits problem definitions from the 
well-known COCO platform and the 
Protein-Docking benchmark (version 
4.0).

2) Baseline Library:
a wide range of classic optimizers, up-
to-date MetaBBO-RL approaches, a 
MetaBBO-SL approach. 

Our Proposed MetaBox Platform
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To facilitate broad and standardized comparison studies

Adjustable difficulty: proportion of training and testing sets (easy: 75% : 25%, difficult: 25% : 75%)
Customized problem dimension 

Large-scale Testsuites

MetaBox Testsuites

Synthetic

24 #instance
COCO:bbob

Noisy-Synthetic

30 #instance
COCO:bbob-noisy

Protein-Docking

280 #instance
Protein-Docking V4
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To facilitate broad and standardized comparison studies

Implemented following the template
Compatible with existing libraries

Baseline Library

Classic

11 #baseline
Classical black 
box optimizer

MetaBBO-RL

7 #baseline
Up-to-date 

MetaBBO-RLs

MetaBBO-SL

1 #baseline
One MetaBBO-SL 

method

Baseline Library
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To comprehensively evaluate the 
effectiveness of MetaBBO-RL approaches

1) three Standardized Metrics:
Aggregated Evaluation Indicator (AEI) 
Meta Generalization Decay (MGD) 
Meta Transfer Efficiency (MTE)

2) a tutorial large-scale comparison 
study:
using Baseline Library, evaluate them 
on MetaBox testsuite by the proposed 
Standardized Metrics.

Our Proposed MetaBox Platform
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To comprehensively evaluate the 
effectiveness of MetaBBO-RL approaches AEI aggregate three traditional BBO performance metrics:

1. the best objective value, 
2. the budget to achieve a predefined accuracy (convergence 
rate)
3. the runtime complexity

MGD assess the generalization performance of MetaBBO-RL 
for unseen tasks.

Where A, B are two different problem set

MTE evaluate the transfer learning capacity of a MetaBBO
RL approach.

Standardized evaluation metrics

Aggregated Evaluation Indicator (AEI)

Meta Generalization Decay (MGD) 

Meta Transfer Efficiency (MTE)
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To comprehensively evaluate the effectiveness of MetaBBO-RL approaches

Comparison of different baseline (Meta)BBO methods (AEI)

observations:
classic optimizer vs MetaBBO-RL
Robustness among different test suits

Experiment results
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Hyper-tuning a MetaBBO-RL approach (LDE)

Experiment results

To comprehensively evaluate the effectiveness of MetaBBO-RL approaches
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To comprehensively evaluate the effectiveness of MetaBBO-RL approaches

Investigating generalization and transfer learning performance (LDE)

Experiment results



MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning (NeurIPS 2023) 

MetaBox can be accessed on 
https://github.com/GMC-DRL/MetaBox

User guides can be accessed on 
https://gmc-drl.github.io/MetaBox/

Github code

Open source
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Contributions:

1. provide the first unified benchmark platform, 
2. Simplify coding towards efficient researching, 
3. provide broad testsuites and baselines for comprehensive comparison
4. provide novel evaluation metrics for in-depth analysis.

Key observation:
1. MetaBBO-RL vs hand-crafted optimizer (performance, robustness)
2. room for improvement:  to discover more effective designs in both meta-level agents and low-level 

optimizers.
3. interpreting the generalization and transfer effects in MetaBBO-RL can be challenging

Future improvement:
Parallel technique; Testsuite; Baseline library…

Discussion And Conclusion


