

Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models

Shuo Chen^{1,3*}, Jindong Gu^{2*}, Zhen Han^{1^}, Yunpu Ma¹, Philip Torr², Volker Tresp^{1,4}

LMU Munich¹, University of Oxford², Siemens³, Munich Center for Machine Learning (MCML)⁴ *equal contribution. ^corresponding author.

Figure 1. Various adaptation methods have been proposed to enhance the performance of pretrained vision-language models in specific domains.

Test samples in real-world applications often differ from the data used during pre-training and adaptation. Model robustness is essential. Project Page

VQA during adaptation

What is this animal?

Source: https://www.pinterest.com/

VQA on test sample

What is this animal?

Source: https://www.pinterest.com/

Figure 2. Multimodal adaptation methods are sensitive to image and text corruptions.

Project Page

Figure 2. Multimodal adaptation methods are sensitive to image and text corruptions.

We want to know

- Which adaptation performs better on which tasks, w.r.t robustness and performance.
- Whether these methods are robust against multimodal corruptions.
- Whether more examples or more trainable parameters assure better robustness

Project Page

Some examples of image and text corruption

Some examples of image and text corruption

Some examples of image and text corruption

Figure 3. Corruption methods used in this study.

	VQAv2		GQA		NL	VR ²	MSCOCO Caption	
The Number of	Images	QA pairs	Images	QA pairs	Images	QA pairs	Images	Captions
Training set	113.2K	605.1K	72.1K	943.0K	103.2K	86.4K	113.2K	566.8K
Validation set	5.0K	26.7K	10.2K	132.1K	8.1K	7.0K	5.0K	5.0K
Test set	5.0K	26.3K	398	12.6K	8.1K	7.0K	5.0K	5.0K

Table 1. Dataset Statistics

Relative Robustness: $RR = 1 - \frac{\Delta P}{P_I}$, $\Delta P = (P_I - P_o)$

 P_I : performance on in-distribution dataset P_O : performance on out-of-distribution dataset

Equation 1. Evaluation Protocol

https://adarobustness.github.io

We have built

11 widely used adaptation methods
20 different image corruption methods
96 different levels of image corruption
35 different text corruption methods
87 different levels of text corruption
7 out-of-distribution benchmark datasets

\sim	Adaptation method Image Corruptions	Updated Params	V(Acc (%))Av2 RR (%)	G Acc (%)	QA RR (%)	NL Acc (%)	VR ² RR (%)	MSCO CIDEr	CO Caption RR (%)
	Full Fine-tuning	100%	66.75	84.86±5.17	55.04	89.20±0.04	73.01	90.34±0.04	115.03	68.40±0.14
	Single Adapter	4.18%	65.35	85.76 ±5.32	54.14	82.49 ± 0.04	73.89	90.04 ± 0.05	115.04	68.68 ± 0.14

	TXT	
--	-----	--

١	Adaptation method	Updated	tted $VQAv2$		G		NLVR ² A co $(\%)$ PP $(\%)$	
	Text Corruptions	1 ai ai ii s	Acc (10)		Acc (70)		Acc (70)	KK (70)
1	Full Fine-tuning	100%	66.75	$73.65{\scriptstyle\pm22.38}$	55.04	$66.92{\scriptstyle\pm24.14}$	73.01	87.06 ± 11.00
	Single Adapter	4.18%	65.35	77.64±21.09	54.14	$67.47{\scriptstyle\pm20.03}$	73.89	$88.49{\scriptstyle\pm10.87}$

A higher sensitivity towards **text corruptions**, especially to character-level corruptions

Adaptation method	Updated	V)Av2	G	QA	NI	NR^2	MSCO	CO Caption
Image Corruptions	Params	Acc (%)	RR (%)	Acc (%)	RR (%)	Acc (%)	RR (%)	CIDEr	RR (%)
Full Fine-tuning	100%	66.75	84.86±5.17	55.04	89.20±0.04	73.01	90.34±0.04	115.03	$68.40{\scriptstyle \pm 0.14}$
Single Adapt	4.18%	65.35	85.76±5.32	54.14	$82.49{\scriptstyle\pm0.04}$	73.89	$90.04{\scriptstyle\pm0.05}$	115.04	$68.68{\scriptstyle \pm 0.14}$

Adaptation method	Updated	V	QAv2	G	FQA	NLVR ²		
Text Corruptions	Params	Acc (%)	RR (%)	Acc (%)	RR (%)	Acc (%)	RR (%)	
Full Fine-tuning	100%	66.75	$73.65{\scriptstyle\pm22.38}$	55.04	$66.92{\scriptstyle\pm24.14}$	73.01	87.06±11.00	
Single Adapt	4.18%	65.35	77.64±21.09	54.14	$67.47{\scriptstyle\pm20.03}$	73.89	88.49±10.87	

Language information plays a more significant role than visual information

Figure 4. RR against blank-image corruption.

More adaptation data *does not consistently enhance* robustness.

Figure 5. RR given different size of adaptation dataset.

More parameters do not ensure enhanced robustness and some even reduce it

Figure 6. RR given different size of adaptation modules.

Combining corruptions from two modalities can lead to a greater drop in robustness

Figure 7. RR given both visual and text corruptions.

Robustness against natural dataset distribution shift follows the similar conclusions.

Figure 8. Performance on natural distribution shift dataset (VQA-RAD).

5. Conclusion

We have built

11 widely used adaptation methods
20 different image corruption methods
96 different levels of image corruption
35 different text corruption methods
87 different levels of text corruption
7 out-of-distribution benchmark datasets

https://adarobustness.github.io

5. Conclusion

We have built

 widely used adaptation methods different image corruption methods different levels of image corruption different text corruption methods different levels of text corruption out-of-distribution benchmark datasets

https://adarobustness.github.io

We find out

Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models

Thank you!

adarobustness.github.io chenshuo.cs@outlook.com