

Revisiting the Evaluation of Image Synthesis with GANs

Mengping Yang^{1,*} Ceyuan Yang^{1,*} Yichi Zhang¹ Qingyan Bai² Yujun Shen² Bo Dai¹

¹Shanghai AI Laboratory, ²Ant Group

* Denotes Equal Contribution

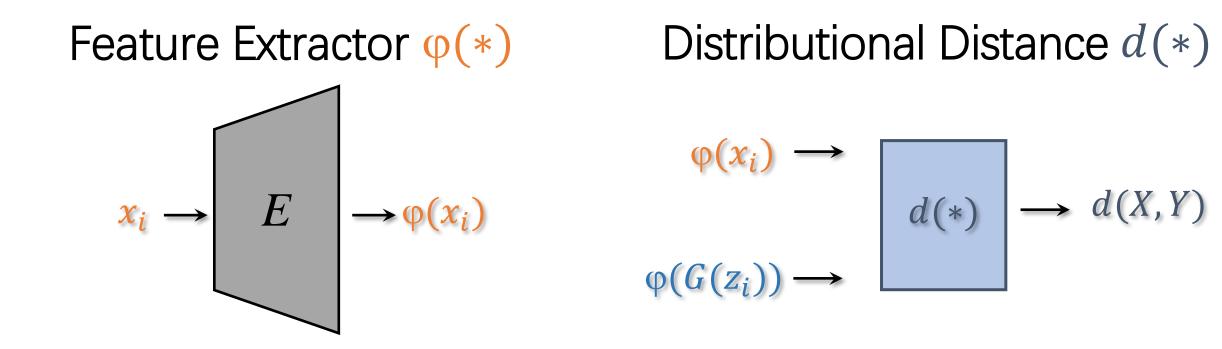
https://github.com/kobeshegu/Synthesis-Measurement-CKA

Explosive developments of generative models

A consistent and comprehensive evaluation system is critical!

Random generated Churches

Artwork generated by Stable Diffusion. Credit: https://stablediffusion.fr/ Two essential components for synthesis evaluation

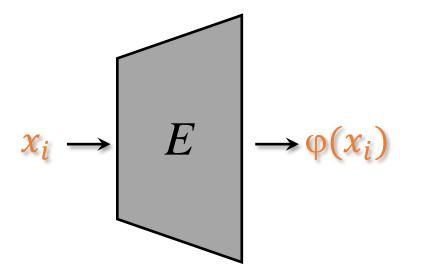


Extracting samples' features

Delivering the distribution divergence

Several key factors *w.r.t* feature extractors

Feature Extractor $\phi(*)$



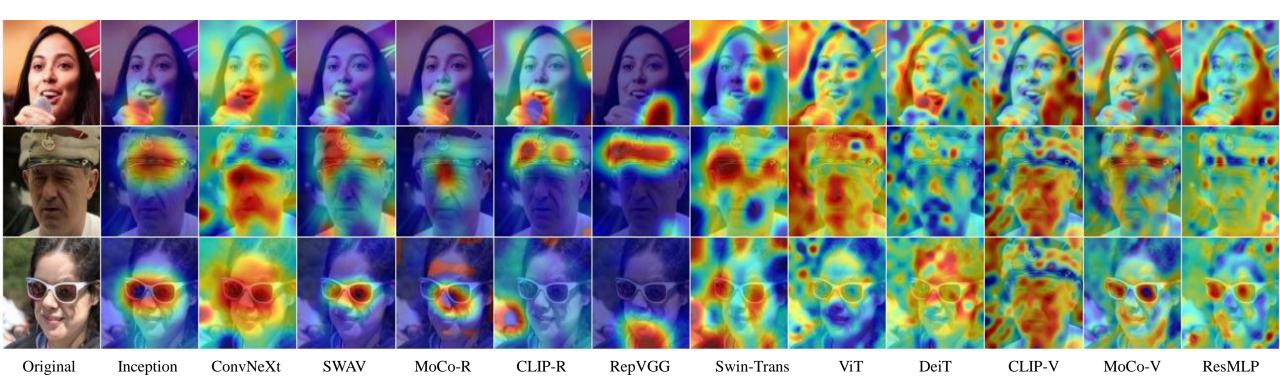
Extracting samples' features

Features extractors define measurement spaces for evaluation, they differ in:

- Supervision (Fully/Self-supervised)
- Network architectures (CNN vs. ViT)
- **Representation spaces** (Similarity)

Extractors yield *different* focus on *various semantics*

- CNN-based extractors highlight objects related to the pre-trained domain (*e.g.*, microphone, hat, and sunglasses)
- ViT-based extractors capture larger regions
- Multiple extractors **complement** each other



Extractors may define similar (homogeneous) spaces

- Similar representation spaces are redundant in practice
- Remaining extractors: ConvNeXt-SWAV -ConvNeXt, SWAV, RepVGG CNN-based extractors RepVGG -CLIP-ViT, MoCo-ViT, ViT ViT-based extractors CLIP-V -These extractors provide reliable rank: MoCo-V ViT CLIP-V Model ConvNeXt RepVGG SWAV ViT MoCo-V 67.53 3.35 BigGAN 140.04 1.12 29.95 238.78 CLIP-R -102.26 58.85 0.87 23.98 85.83 3.22 -deep MoCo-R StyleGAN-XL 19.22 15.93 0.18 8.51 29.38 1.85 CONVINEXT SWAN REPVGG CLIP-NOCON VIT CLIP-R MOCOR StyleGAN-XL > BigGAN-deep > BigGAN

Investigation on different distributional distances

Distributional Distance

$$\varphi(x_i) \rightarrow d(*) \rightarrow d(X,Y)$$

$$\varphi(G(z_i)) \rightarrow d(X,Y)$$

Delivering the distribution divergence

Various distances reflect different divergence, they are influenced by:

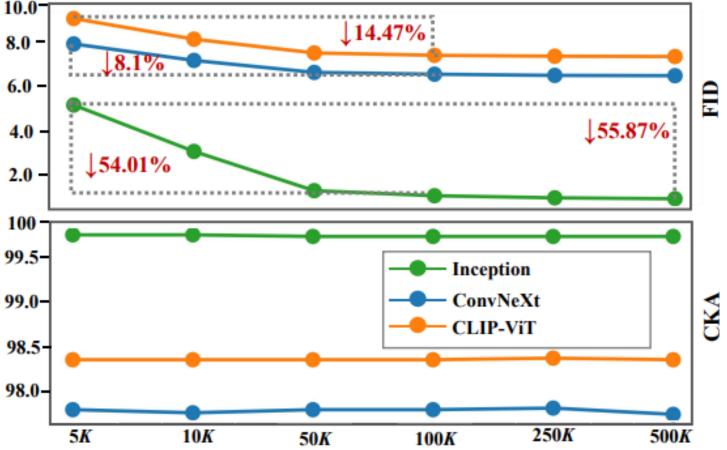
- Source of features (features from different layers and spaces)
- The amount of synthesized samples

CKA provides *normalized scores* in various spaces

- Comparable between hierarchical layers and representation spaces
- Easier to combine scores from different extractors
- The FD scores of various layers **fluctuate dramatically**

	Model	BigGAN		StyleGAN-XL				
	Layer	FD↓	CKA ↑	FD↓	CKA_{\uparrow}			
	Layer ₁	0.60	99.06	0.05	99.84			
AND AND AND AND AND AND	Layer ₂	7.45	86.89	0.77	91.06			
	Layer ₃	30.24	82.80	6.11	85.75			
11- 40- 41- 41- 41- 41- 41- 41- 41- 41- 41- 41	Layer ₄	104.10	80.13	35.77	83.55			
	Overall	N/A	87.22	N/A	90.05			
Features from shallow to deep layers								

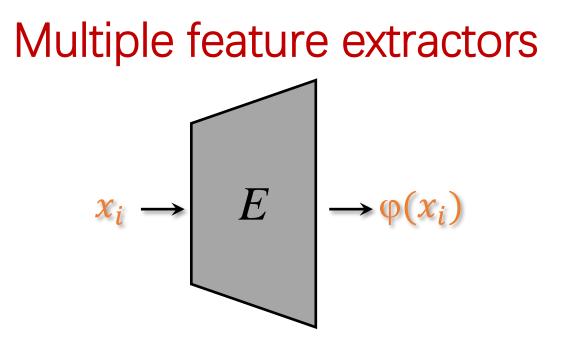
CKA shows satisfactory *sample-efficiency* and *stability*



Centered Kernel Alignment:

- **Stable** under different data amount
- Less samples are required for reliable evaluation
- FID Scores could be altered by synthesizing more samples

Our new measurement system



Center Kernel Alignment

$$\begin{array}{c} \varphi(x_i) \longrightarrow \\ d(*) \end{array} \longrightarrow d(X,Y) \end{array}$$

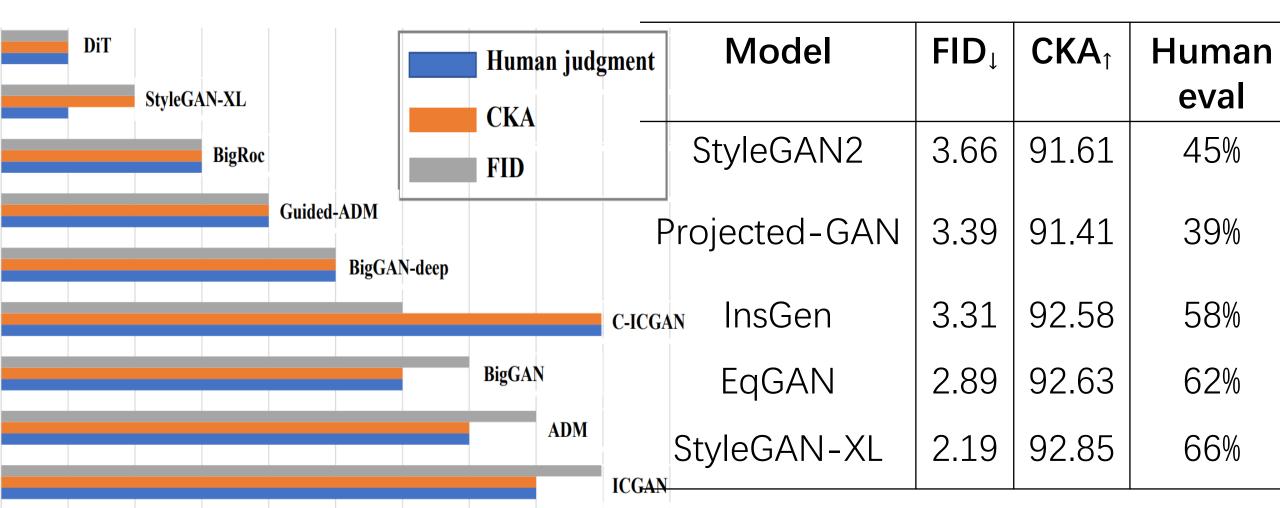
$$\varphi(G(z_i)) \longrightarrow \end{array}$$

Extracting samples' features Delivering the distribution divergence

Our evaluation system facilitates more comprehensive evaluation!

Benchmark 1: Re-evaluate existing generative models

Our evaluation *correlates well* with *human visual judgment*



Benchmark 2: GANs v.s. Diffusion models

GANs achieve **better trade-offs** between efficiency and quality Designing **computation-efficient** diffusion models is essential

Model	FID↓	CKA ↑	Human eval	#Params	Sec/Kimg(s)
BigGAN	8.70	82.82	53%	158.3 M	33.6
BigGAN-deep	6.95	83.65	55%	85 M	27.6
StyleGAN-XL	2.30	86.52	67%	166.3 M	64.8
ADM	10.94	82.12	45%	500 M	17274
Guided-ADN	4.59	84.66	57%	554 M	17671
DiT	2.27	86.61	67%	675 M	3736.8

Benchmark 2: Image-to-Image translation

Our system is **generalizable** for different synthesis tasks

Horse-to-Zebra dataset

Model	FID	ConvNeXt	RepVGG	SWAV	ViT	MoCo-ViT	CLIP-ViT	Overall
CycleGAN [71]	83.32	73.55	88.67	85.82	83.96	74.72	73.74	80.08
AttentionGAN [57]	76.05	75.59	91.73	86.37	85.16	76.65	75.49	81.83
CUT [43]	51.29	78.48	93.22	88.83	87.84	78.75	77.36	84.08
Cat-to-Dog								
Model	FID	ConvNeXt	RepVGG	SWAV	ViT	MoCo-ViT	CLIP-ViT	Overall
CUT [43]	74.95	84.93	78.75	88.83	84.31	93.56	70.91	83.55
GP-UNIT [68]	60.96	90.45	87.79	94.05	90.12	95.91	75.32	88.94
Cat-to-Dog								
Model	FID	ConvNeXt	RepVGG	SWAV	ViT	MoCo-ViT	CLIP-ViT	Overall
GP-UNIT [68]	31.66	79.58	78.18	96.79	86.93	93.92	77.42	85.47
MUNIT [25]	18.88	84.87	84.11	98.51	88.11	95.95	86.10	89.61

Revisiting the Evaluation of Image Synthesis with GANs

Mengping Yang^{1,*} Ceyuan Yang^{1,*} Yichi Zhang¹ Qingyan Bai² Yujun Shen² Bo Dai¹

¹Shanghai AI Laboratory, ²Ant Group

* Denotes Equal Contribution