

Xray_{to}3DShape Benchmark

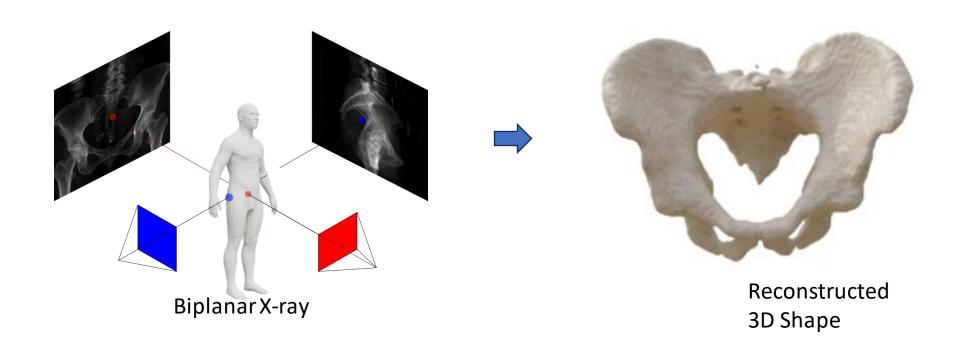
Benchmarking Encoder-Decoder Architectures for Biplanar X-ray to 3D Shape Reconstruction

Mahesh Shakya and Bishesh Khanal

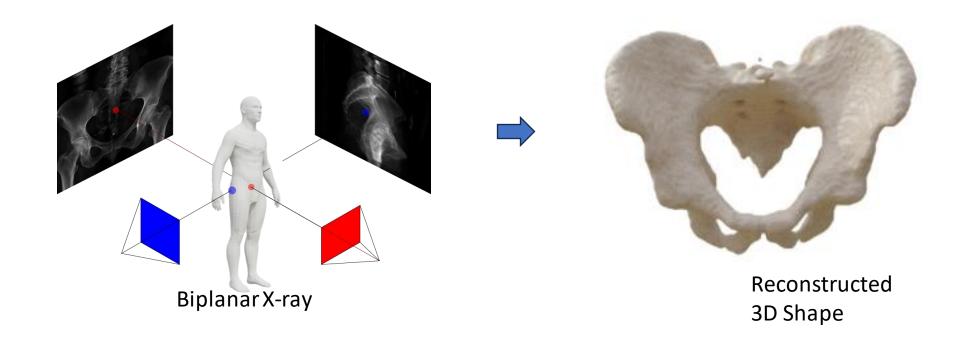
TransfOrming Global health with Al (**TOGAI**) Lab, Nepal Applied Mathematics and Informatics Institute for research (**NAAMII**)

NeurIPS 2023 Datasets and Benchmarks Track

Biplanar Xray to 3D Reconstruction

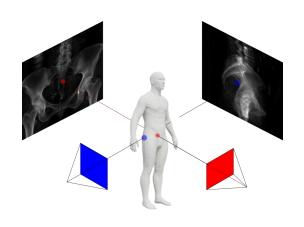


Biplanar Xray to 3D Reconstruction



Augments low cost, low radiation X-ray device with CT-like 3D visualization Improved diagnosis, surgery planning and navigation, better biomarkers

Biplanar Xray to 3D Reconstruction



Augments low cost, low radiation X-ray device with CT-like 3D visualization

Improved diagnosis, surgery planning and navigation, better biomarkers

Limitations of existing works

Validation

- single private dataset
- limited baseline comparison

Evaluation only image-based metrics

Analysis only aggregated metrics

	Previous Approaches						
Procedure Reference→	UNet	Transvert	TL-Embedding	1DConcat			
	Kasten[2020] Bayat[2020]		Shiode[20212]	Chen[2019]			
Dataset	Private	Mixed	Private	Private			
Anatomy of Interest	Knee	Vertebra	Wrist	Vertebra			
Input views	AP & LAT	AP & LAT	AP	AP & LAT			
Input Resolution(mm)	1.0	1.5	0.4	1.5			
Input Size	128^{2}	64^{2}	500×625	64^{2}			
Training Samples	188	~10k	147	90			
Test Samples	20	\sim 2k	26	10			
Supervised Loss	weighted-CE	L1	CE	L2			
Adversarial Loss	X	✓	×	×			
Reprojection Loss	✓	×	X	×			
AP/LAT View-Fusion	Input-level	Feature-level	AP view only	Feature-level			
Surface Error(mm)							
→ avg	1.778	×	1.05 - 1.45	×			
∟ max	X	5.11	X	X			
Dice Score	90.7	95.5	X	74.0			

Limitations of existing works

Validation

- single private dataset
- limited baseline comparison

Evaluation only image-based metrics

Analysis only aggregated metrics

	Previous Approaches						
Procedure Reference→	UNet	Transvert	TL-Embedding	1DConcat			
	Kasten[2020]	Bayat[2020]	Shiode[20212]	Chen[2019]			
Dataset	Private	Mixed	Private	Private			
Anatomy of Interest	Knee	Vertebra	Wrist	Vertebra			
Input views	AP & LAT	AP & LAT	AP	AP & LAT			
Input Resolution(mm)	1.0	1.5	0.4	1.5			
Input Size	128^{2}	64^{2}	500×625	64^{2}			
Training Samples	188	~10k	147	90			
Test Samples	20	\sim 2k	26	10			
Supervised Loss	weighted-CE	L1	CE	L2			
Adversarial Loss	X	✓	X	X			
Reprojection Loss	✓	X	X	X			
AP/LAT View-Fusion	Input-level	Feature-level	AP view only	Feature-level			
Surface Error(mm)							
→ avg	1.778	X	1.05 - 1.45	X			
∟ max	×	5.11	X	×			
Dice Score	90.7	95.5	X	74.0			

Key Contributions of Xray-to-3D-benchmark

Validation: First comprehensive benchmark

Evaluation: Elaborate Evaluation including Clinical Tasks and Metrics

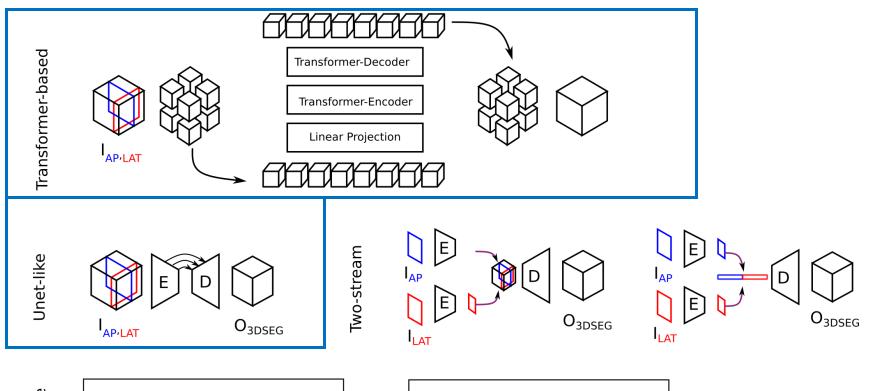
Analysis: Disaggregated reporting

Reproducible and accessible benchmark toolkit

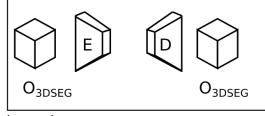
4 anatomies, 6 Benchmarked Datasets

CT Segmentation Datasets	Anatomy	Preprocessing					
		Reject partial bones	Reject anisotropic samples	Extract ROI	Segment u/ Pretrained model		
CTSpine1K							
CTPelvic1K							
TotalSegmentator							
LIDC-IDRI							
VerSe2019							
RSNA Cervical Fracture							

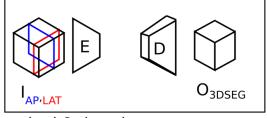
8 Benchmarked Encoder-Decoder Architecture



Two-Stage



learn latent space



embed & decode

Transformer-based

 SwinUNETR (2022), UNETR (2022)

UNet-like

 Attention-UNet (2018), UNet (2015)

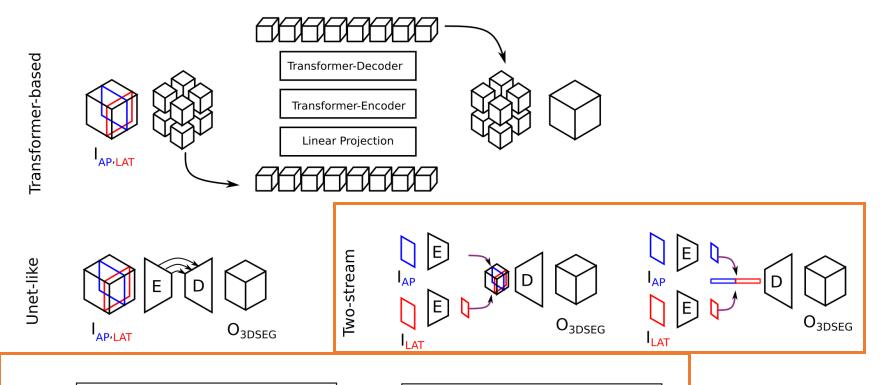
Two-Stage Enc-Decoder

TL-Embedding (2016)

Two-stream Enc-Decoder

1D-Concat,
 2D-Concat (2020),
 MultiScaleConcat (2019)

8 Benchmarked Encoder-Decoder Architecture



embed & decode

 O_{3DSEG}

Two-Stage

 O_{3DSEG}

learn latent space

 O_{3DSEG}

Transformer-based

 SwinUNETR (2022), UNETR (2022)

UNet-like

 Attention-UNet (2018), UNet (2015)

Two-Stage Enc-Decoder

TL-Embedding (2016)

Two-stream Enc-Decoder

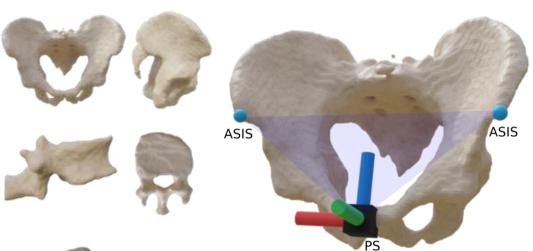
 1D-Concat, 2D-Concat (2020), MultiScaleConcat (2019)

Clinically relevant metrics

Reconstructed 3D Shape

Clinically relevant metrics

Reconstructed 3D Shape



Patient-specific Modelling
Pelvic Coordinate System: for
standardized reporting of joint
biomechanics

Applications / Downstream tasks
Normal: < 20%

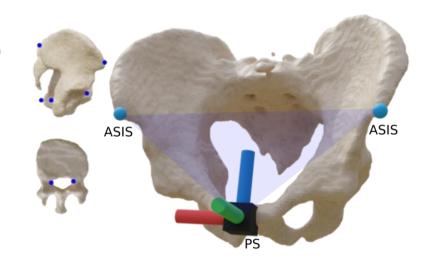
Grade 2: 25-40%

Grade 3: > 40%

Diagnosis and Biomarker Compression Fracture Grading: relative reduction of vertebra height

Clinically relevant metrics

Reconstructed 3D Shape



Patient-specific Modelling
Pelvic Coordinate System: for
standardized reporting of joint
biomechanics

Applications / Downstream tasks
Normal: < 20%

Grade 2: 25-40%

Grade 3: > 40%

Diagnosis and Biomarker Compression Fracture Grading: relative reduction of vertebra height

Result Highlights

Benchmarking: Which architecture performs best?
SwinUNETR and AttUnet perform well across multiple datasets and anatomies

Performance gaps for clinical deployment

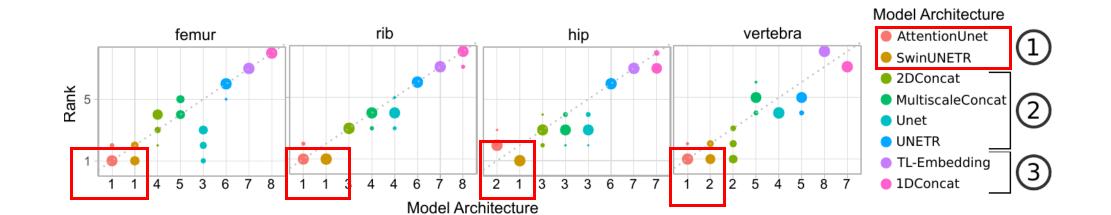
- Reduced performance on clinically relevant minority subgroups
- Reduced performance on task-specific domain shifts such as fractures, misaligned xrays

Clinically relevant metrics

Dice Score for model evaluation at dataset-level does not do justice at Patient-level

SwinUnetr and AttUNet perform well across datasets

Dataset						
(#train/#test) (vol size)	Method Reference	#Param	Dice(%)↑	HD95(mm)↓	ASD(mm)↓	NSD@1.5mm↑
(voxel resolution)						
Aggregate	SwinUNETR	62.2M	79.27	3.65	0.86	0.68
	AttentionUnet	1.5M	78.92	3.07	0.84	0.69
	TwoDPermuteConcat	1.2M	78.08	3.33	0.91	0.67
	UNet	1.2M	77.27	3.49	1.00	0.66
	MultiScale2DPermuteConcat	3.5M	77.09	4.16	0.96	0.65
	UNETR	96.2M	74.20	4.27	1.14	0.62
	TLPredictor	6.6M	69.53	4.70	1.43	0.54
	OneDConcat	40.6M	69.16	7.07	1.53	0.53

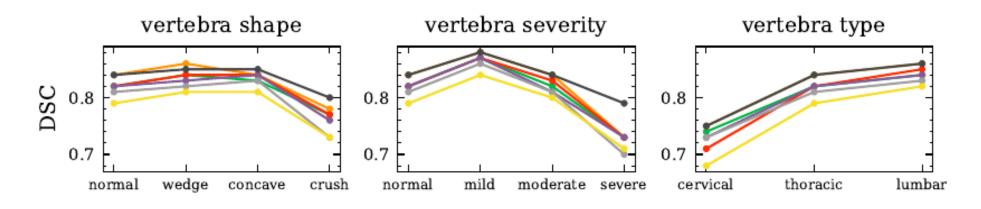


Performance gaps for clinical deployment

Discrepancy in performance on clinically relevant minority subgroups

Reduced performance for Image & Population Domain shifts hinder clinical translation

Misaligned X-ray views can slightly reduce performance; vertebra is more robust since such perturbed views occur naturally in the dataset

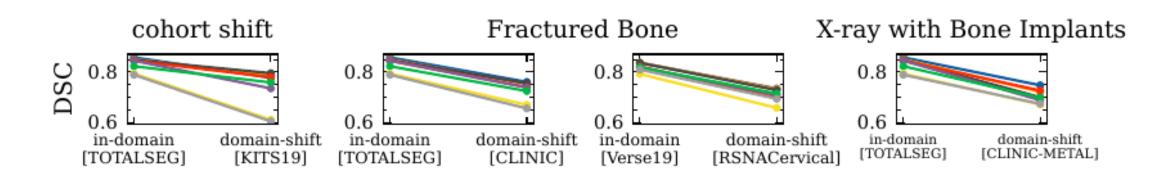


Performance gaps for clinical deployment

discrepancy in performance on clinically relevant minority subgroups

Reduced performance for Image & Population Domain shifts hinder clinical translation

Misaligned X-ray views can slightly reduce performance; vertebra is more robust since such perturbed views occur naturally in the dataset

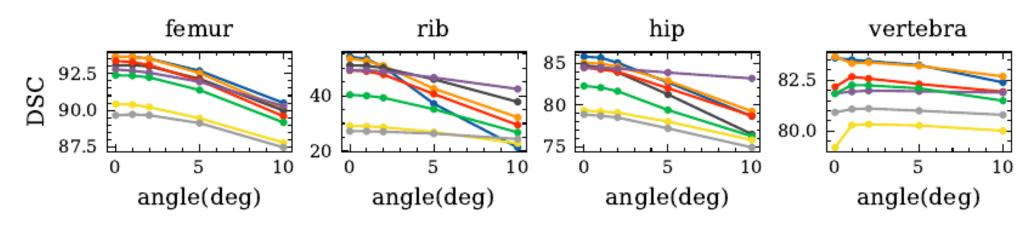


Performance gaps for clinical deployment

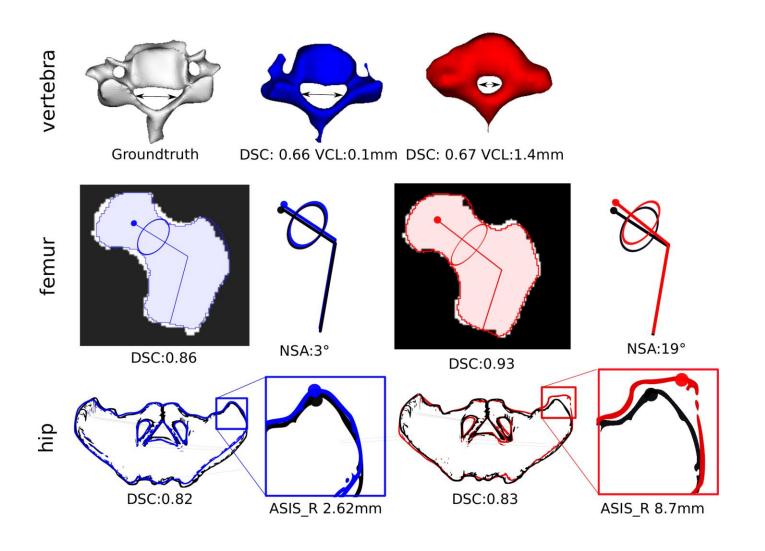
discrepancy in performance on clinically relevant minority subgroups

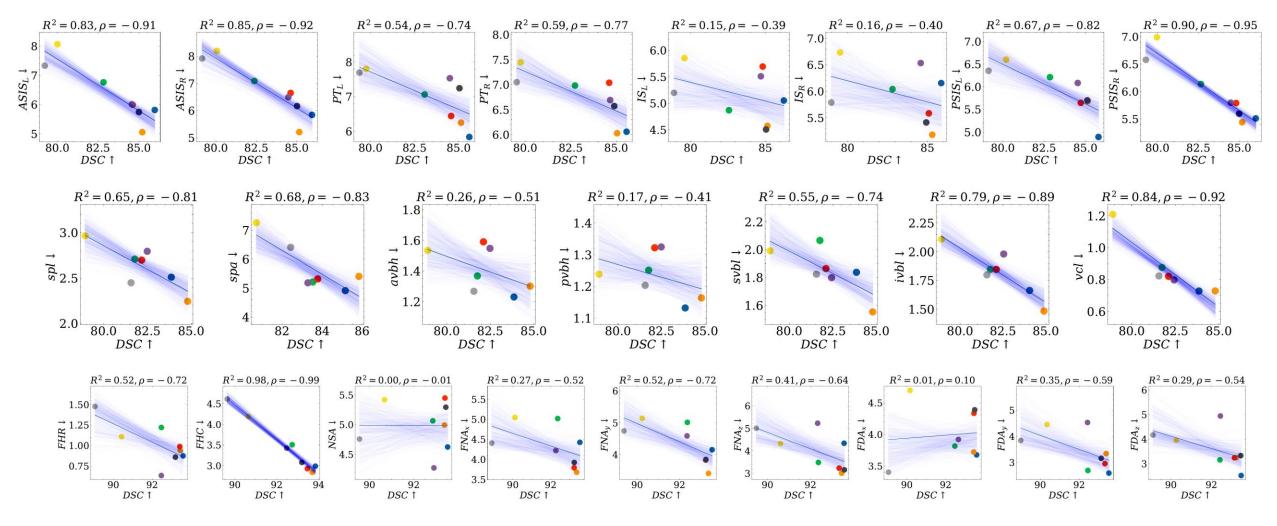
Reduced performance for Image & Population Domain shifts hinder clinical translation

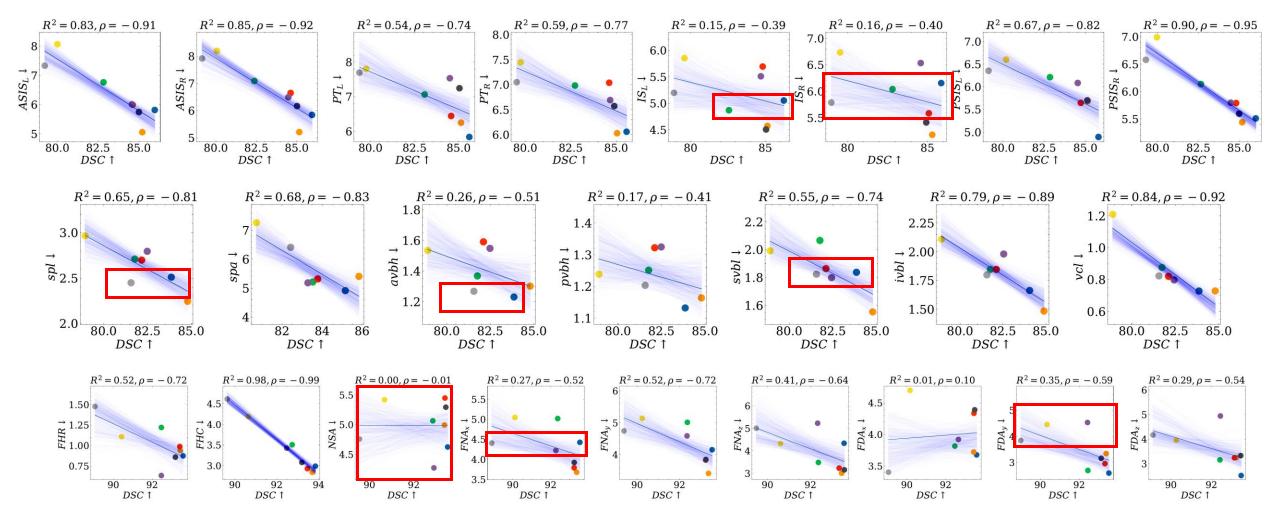
Misaligned X-ray views can slightly reduce performance; vertebra is more robust since such perturbed views occur naturally in the dataset



Reconstructed Reconstructed Reference shape Shape B Shape A Reference Prediction A Prediction B slice Dice score: 0.67 Dice score: 0.78 Angle error: 0° Angle error: 10°







Conclusion

First comprehensive benchmark and Evaluation of deep learning-based methods
Reproducible and accessible benchmark toolkit for the community to build upon
Overlap and Surface-based Metrics are not sufficient for clinical evaluation
Realistic Clinical Benchmarking Tasks show gaps in clinical adoption due
to reduced performance on minority subgroups and domain shifts

Benchmark Toolkit: https://github.com/naamiinepal/xrayto3D-benchmark

