

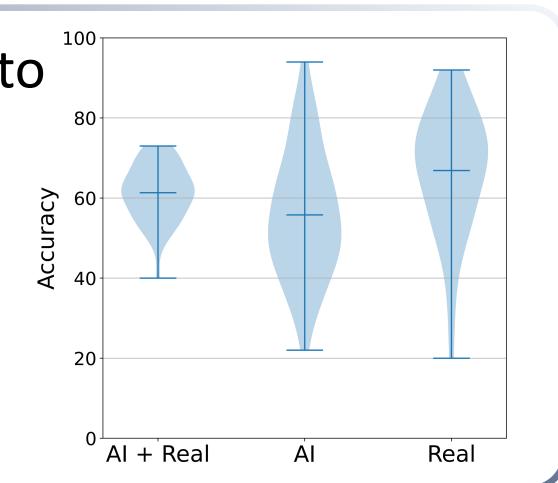
THE UNIVERSITY OF SYDNEY

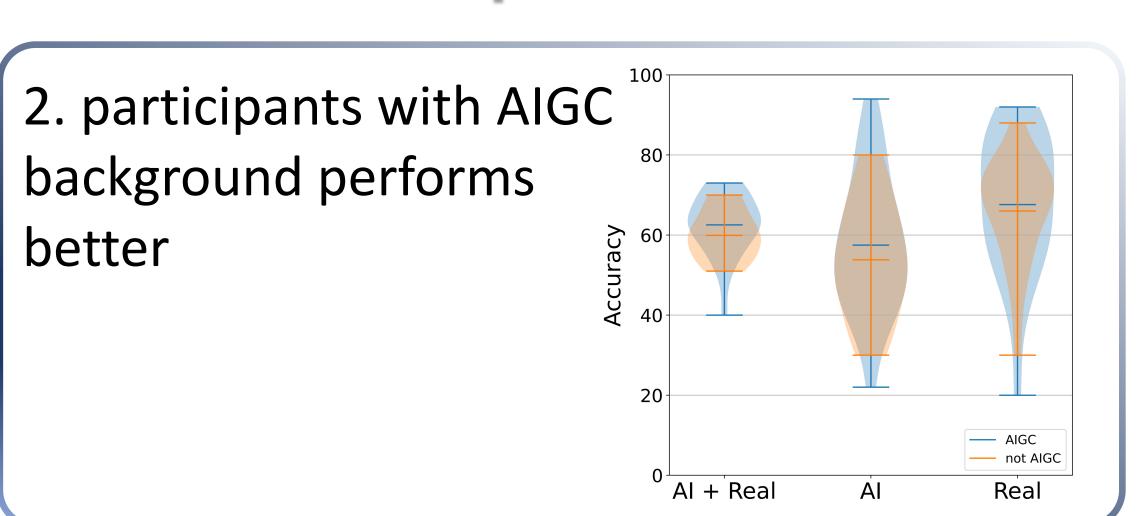
Seeing is not always believing: Benchmarking Human and Model Perception of Al-Generated Images

Zeyu Lu^{1,2}, Di Huang^{2,3}, Lei Bai², Jingjing Qu², Chengyue Wu⁴, Xihui Liu⁴, Wanli Ouyang²

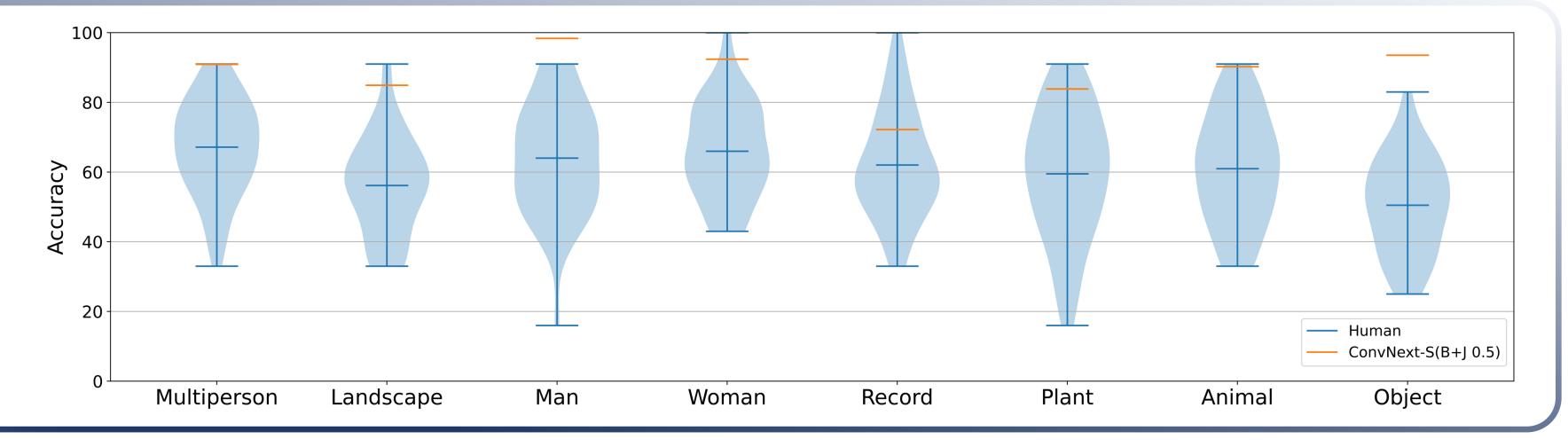
¹Shanghai Jiao Tong University, ²Shanghai Artificial Intelligence Laboratory, ³The University of Sydney, ⁴The University of Hong Kong

Sentry-Questionnaire: Can you identify which ones are Al-generated images?




A new, large-scale dataset for fake image detection

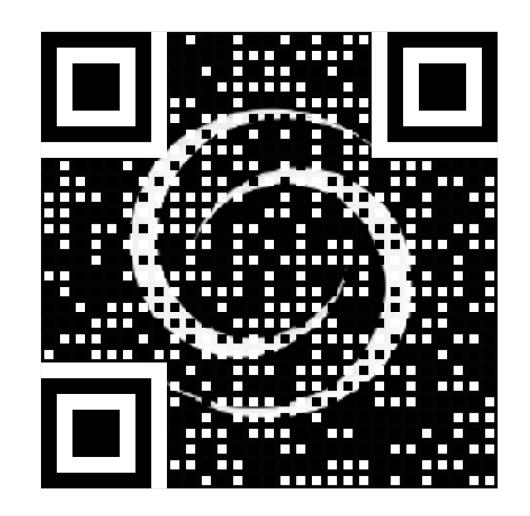
Dataset	CC3M-Train	StyleGAN3-Train	SD-V1.5Real-dpms-25	IF-V1.0-dpms++-25	StyleGAN3	ImageNet-Test	CelebA-HQ-Train	CC3M-Val	SD-V2.1-dpms-25	SD-V1.5-dpms-25	SD-V1.5Real-dpms-25	IF-V1.0-dpms++-10	IF-V1.0-dpms++-25	IF-V1.0-dpms++-50	IF-V1.0-ddim-50	IF-V1.0-ddpms-50	Cogview2	Midjourney	StyleGan3
Category	Train R R F F				R	Validate R R F F F F F F								F	F	F	F		
Generator	R	R			GAN	K	K	K	Diff									Unk.	
	-	-			\$2400000 TV 184500000 1850	-	-	-											
Numbers	1 M	87K	1 M	1 M	87K	100K	24K	15K	15K	15K	15K	15K	15K	15K	15K	15K	22 K	5.5K	60K
This work						•	•	•		. 1	. 1	.1	. 1	. 1	.1	.1	. 1		


HPBench: A Benchmark for Human Perception

1. humans struggle significantly to distinguish real photos from Algenerated ones, with a misclassification rate of 38.7%

3. The average performance of human is far worse than the performance of the model

4. Statics of judgement criteria from participants correctly identifying fake images


CLIP-ViT-L(LC)

Category	Detail	Smooth	Blur	Color	Shadow & Light	Daub Rationality		Intuition	
Number	332	205	142	122	95	59	57	169	
Number Percent	28%	17%	12%	10%	8%	5%	5%	14%	

MPBench: A Benchmark for model Perception

		ImageNet-Test	CelebA-HQ-Train	CC3M-Val	Average Acc.	SD-V2.1-dpm-25	SD-V1.5-dpm-25	SD-V1.5Real-dpm-25	IF-V1.0-dpm++-10	IF-V1.0-dpm++-25	IF-V1.0-dpm++-50	IF-V1.0-ddim-50	IF-V1.0-ddpm-50	Cogview2	Midjourney	StyleGAN3	Average Acc.	Total Average Acc.
			R	eal							Fa	ke						R+F
Model	Training Dataset	-	-	-	-	Diff.	Diff.	Diff.	Diff.	Diff.			Diff.	AR	Unk.	GAN	-	-
ConvNext-S(B+J 0.1)	Dataset Setting A: SD-V1.5Real-dpms-25 (1M)	95.3	99.9	99.9	98.3	48.6	99.9	85.1	92.9	57.6	55.9	41.1	72.6	55.7	41.6	37.4	62.5	70.2
ConvNext-S(B+J 0.5)		95.9	99.9	99.9	98.5	53.5	100	83.3	91.1	50.2	49.6	35.3	66.9	54.9	44.7	35.7	60.4	68.6
ResNet50(B+J 0.1)		93.0	95.3	95.6	94.6	71.7	71.8	98.6	57.2	26.6	29.0	23.6	47.9	11.8	40.3	9.1	44.3	55.1
ResNet50(B+J 0.5)		93.2	95.5	95.8	94.8	70.6	70.4	98.5	52.1	23.6	26.1	21.6	46.2	10.6	36.6	7.2	42.1	53.4
CLIP-ViT-L(LC)		49.6	87.0	75.4	70.6	73.3	86.6	97.6	93.9	77.8	71.4	84.1	90.9	86.6	88.7	86.1	<u>85.1</u>	82.0
ConvNext-S(B+J 0.1)	Dataset Setting B: IF-V1.0-dpms++-25 (1M)	87.6	99.9	99.9	95.8	2.2	34.5	2.5	99.7	99.9	99.9	11.1	66.4	19.2	8.9	10.1	41.3	52.9
ConvNext-S(B+J 0.5)		87.8	99.9	99.9	95.8	3.9	39.1	3.9	99.6	99.9	99.8	18.5	79.2	25.8	8.1	8.0	44.1	55.2
ResNet50(B+J 0.1)		89.4	95.8	95.0	93.4	37.5	56.5	20.0	84.0	95.6	91.7	39.7	69.4	45.3	15.7	8.8	51.2	60.3
ResNet50(B+J 0.5)	CC3M-Train (1M)	90.8	95.6	94.5	93.6	41.6	58.8	21.7	82.3	95.2	91.3	47.0	79.7	56.1	18.3	6.8	<u>54.4</u>	62.8
CLIP-ViT-L(LC)		81.5	83.3	93.0	85.9	38.2	18.5	13.1	80.4	79.7	70.9	61.1	77.7	76.6	33.7	32.8	52.9	60.0
ConvNext-S(B+J 0.1)		58.7	81.0	62.7	67.4	44.9	42.7	39.4	40.7	42.3	42.2	35.7	39.9	53.2	41.6	69.9	44.7	49.6
ConvNext-S(B+J 0.5)	Dataset Setting C:	67.7	92.6	71.2	77.1	33.1	33.7	32.1	33.6	36.5	34.2	35.0	35.5	44.8	28.5	42.6	35.4	44.3
ResNet50(B+J 0.1)	StyleGAN3 (87K)	31.5	14.3	39.1	28.3	67.7	62.7	68.1	65.3	71.0	67.0	58.8	60.9	60.9	81.9	90.9	68.6	60.0
ResNet50(B+J 0.5)		70.6	29.5	63.4	54.5	37.3	34.9	40.0	43.3	43.9	41.9	34.8	38.4	47.8	58.1	81.3	45.6	47.5
CLIP-ViT-L(LC)		37.6	85.9	70.2	64.5	85.7	92.9	94.8	95.3	89.5	84.0	87.5	93.0	84.6	81.4	61.9	<u>86.4</u>	81.7
ConvNext-S(B+J 0.1)	Dataset Setting D:	95.4	99.9	99.9	98.4	39.9	95.1	99.9	99.7	99.8	99.7	43.1	90.4	48.3	32.4	99.8	77.1	81.6
	SD-V1.5Real-dpms-25 (460K)	97.7	99.9	99.9	99.1	52.8	92.9	99.9	99.5	99.7	99.3	46.4	91.7	48.6	35.0	99.9	78.7	83.0
ResNet50(B+J 0.1)	IF-V1.0-dpms++-25 (460K) StyleGAN3 (87K)	1				1										80.8		
ResNet50(B+J 0.5)	CC3M-Train (1M)	84.5	94.7	92.1	90.4	84.4	89.4	96.1	88.9	89.4	85.6	52.4	83.8	55.4	45.8	69.5	76.4	79.4

Project Page

Questionnaire

