HYPER-SKIN: A HYPERSPECTRAL DATASET FOR RECONSTRUCTING FACIAL SKIN-SPECTRA FROM RGB IMAGES

Pai Chet Ng¹, Zhixiang Chi¹, Yannick Verdie², Juwei Lu², Konstantinos N. Plataniotis¹

¹The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto ²Huawei Noah's Ark Laboratory, Huawei Canada

Motivation

- Hyperspectral image: contain rich spatiospectral information
 - Non-invasive approach for skin analysis
- Expensive >\$20k
- Consumer cameras: smartphone, DSLR
- Cheaper <\$2k

- Question:
- Can we reconstruct valuable information from expensive hyperspectral cubes using accessible RGB images, enabling hyperspectral skin analysis directly on consumer devices?

Neurips 2023 Datasets And Benchmarks Track

https://www.canfieldsci.com/imagingsystems/visia-complexion-analysis/

Credit: Getty Images

Hyper-Skin 2023

Neurips 2023 Datasets And Benchmarks Track

- a hyperspectral dataset covering wide range of wave-lengths from visible (VIS) spectrum (400nm - 700nm) to near-infrared (NIR) spectrum (700nm - 1000nm)
- Facial skin-spectra reconstruction for cosmetology applications on consumer devices.

+

Dataset Collection

Neurips 2023 Datasets And Benchmarks Track

- Compliance to the University's research ethics protocol.
 - Approved protocol: RIS-42284
 - Participants signed informed consent ٠
- Data Acquisition Set up:
 - Specim FX10 camera pushbroom camera
 - moved using a customized scanner for precise scanning
 - The distance between the camera and the face • was set at 40cm
 - With a frame rate of 45Hz for one line, it took ٠ approximately 22.7 seconds to capture all 1024 line, 448 spectral bands from 400nm to 1000nm
- Demographic:
 - 51 participants (10s 50s)
 - Male > Female٠
 - Aisan, European, Latino ٠

10s

20s

30s

40s

1 50s

0

10

light

Dataset Attributes

- 306 Hyperspectral cubes from 51 subjects
- Facial skin from 3 different angles and 2 facial poses
- Cube dimension: 1024x1024x448
- Resampled into two separate 31-band datasets
 - VIS spectrum from 400nm to 700nm (10nm step)
 - NIR spectrum from 700nm to 1000nm (10nm step)

Description	(RGB, VIS)	(MSI, NIR)				
Input	RGB	MSI (RGB + Infrared at 960nm)				
Output	VIS (400nm - 700nm)	NIR (700nm - 1000nm)				
Skin physiological features	surface-level characteristics (e.g., pig- mentation and melanin map)	deeper tissue properties (e.g., collagen content and hemoglobin map)				

Neurips 2023 Datasets And Benchmarks Track

Evaluation and Benchmarks

Neurips 2023 Datasets And Benchmarks Track

- Facial skin-spectral reconstruction: RGB $R \in \mathbb{R}^{w \times h \times c} \rightarrow HIS H \in \mathbb{R}^{w \times h \times c}$, $c = 3 \ll C = 31$
- Baseline Models: (1) Hyperspectral Convolutional Neural Network (HSCNN), (2) Hierarchical Regression Network (HRNet), and (3) Multi-stage spectral-wise transformer (MST++)
 - Winners in NTIRE competition series held in conjunction with CVPR from the year of 2018, 2020 to 2022
 - Pretrained models: <u>https://github.com/caiyuanhao1998/MST</u>
- Evaluation metrics: (1) Structural Similarity Index(SSIM), and (2) Spectral Angle Mapper (SAM)

		Pre-trained 1	Iodels Re-trained Models		d Models			Pre-trained Models		Re-trained Models	
	Data	(RGB, VIS)	(MSI, NIR)	(RGB, VIS)	(MSI, NIR)		Data	(RGB, VIS)	(MSI, NIR)	$\ $ (RGB, VIS)	(MSI, NIR)
with Back-	HSCNN [37] HRNet [38]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- -	$ \begin{vmatrix} 0.916 \pm 0.013 \\ 0.933 \pm 0.021 \\ 0.923 \pm 0.011 \end{vmatrix} $	$\begin{array}{c} 0.943 \pm 0.007 \\ 0.955 \pm 0.006 \\ 0.959 \pm 0.006 \end{array}$	with Back-	HSCNN [37] HRNet [38]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{vmatrix} 0.119 \pm 0.008 \\ 0.147 \pm 0.014 \\ 0.113 \pm 0.000 \end{vmatrix} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
ground		0.002 ± 0.042	-	0.923 ± 0.011	0.939 ± 0.000	groun		0.707 ± 0.034	-	0.115 ± 0.009	0.080 ± 0.000
w/o Back- ground	HSCNN [37] HRNet [38] MST++ [39]	$\begin{array}{c} 0.816 \pm 0.021 \\ 0.813 \pm 0.023 \\ 0.766 \pm 0.035 \end{array}$	- - -	$\begin{array}{c} 0.950 \pm 0.011 \\ 0.961 \pm 0.014 \\ 0.954 \pm 0.010 \end{array}$	$\begin{array}{c} 0.964 \pm 0.006 \\ 0.971 \pm 0.005 \\ 0.974 \pm 0.004 \end{array}$	w/o Back- groun	HSCNN [37] HRNet [38] MST++ [39]	$ \begin{vmatrix} 0.621 \pm 0.049 \\ 0.596 \pm 0.046 \\ 0.628 \pm 0.050 \end{vmatrix} $	- -] -	$ \begin{vmatrix} 0.113 \pm 0.009 \\ 0.133 \pm 0.015 \\ 0.107 \pm 0.010 \end{vmatrix} $	$\begin{array}{c} 0.083 \pm 0.012 \\ 0.086 \pm 0.010 \\ 0.076 \pm 0.005 \end{array}$
0 -			0.8 -	Spectral profile at (300, 500) Groud truth Prediction	0.8 -	Spectral profile at (300, 50	0) Groud truth 0.75 Prediction	Spectral pro	file at (300, 500)	1

And Benchmarks Track

Datasets

THANK YOU

https://github.com/hyperspectral-skin/Hyper-Skin-2023

7