SiT Dataset: Socially interactive Pedestrian Trajectory Dataset for Social Navigation Robots

Jong Wook Bae^{*}, Jungho Kim^{*}, Junyong Yun^{*}, Changwon Kang^{*}, Junho Lee, Jeongseon Choi, Chanhyeok Kim, Jungwook Choi, Jun Won Choi[†]

*Equal contribution. †Corresponding author.

1. Challenges

- The Advent of diverse driving robots
 - Explosive growth of service robot market
- Insufficiency of comprehensive datasets for autonomous mobile robots
 - Necessity for socially interactive robots
 - Human Perception in 3D and movement prediction for safe and agile navigation

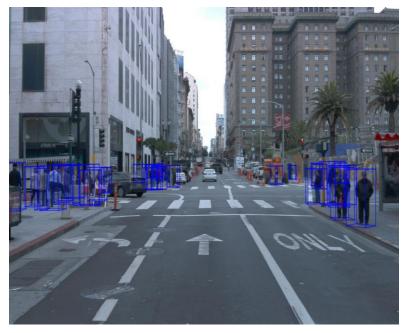


(a) Food delivering robot^[1]

(b) Serving robot ^[2]

1. Challenges: Pedestrian Trajectory Datasets

- Data collected from fixed positions, potentially restricting the range of data variability
- Hard to reflect Human-Robot Interaction (HRI)
- Mostly consisting of camera images and data on pedestrian location


(a) ETH-Hotel^[4]

1. Challenges: Autonomous Driving Datasets

- Vehicle-centric on autonomous driving datasets rather than pedestrian-centric
 - A Shortage of vehicle-pedestrian interaction in autonomous driving datasets
 - Gaps in real-world robot and pedestrian interaction behavior
- Asynchronous multi-sensor data in robot-based datasets

(a) nuScenes^[7] (vehicle-based)

(b) Waymo Open^[8] (vehicle-based)

1. Challenges: Comparison with other datasets

Spra LAB Signal Processing & Artificial-Intelligence Laboratory

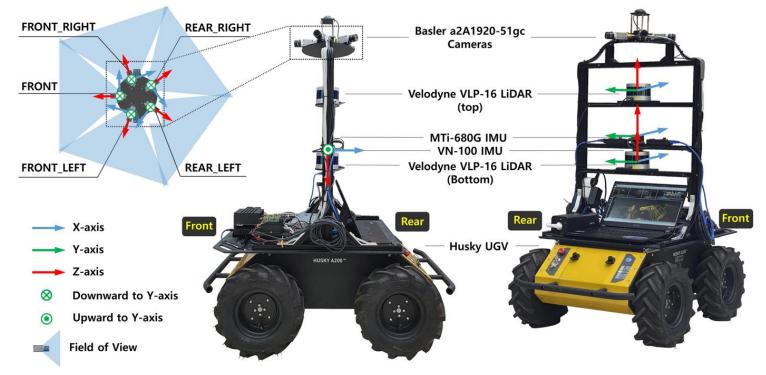
- Pedestrian trajectory datasets:
 - Data collected from fixed positions, potentially restricting the range of data variability
- Autonomous driving datasets:
 - Vehicle-centric on autonomous driving datasets rather than pedestrian-centric
 - Asynchronous multi-sensor data in robot-centric datasets

Dataset	Platform	Task	Sync.	Мар	E2E	Location
UCY	Fixed	Tracking, Prediction	-			Outdoor
ETH	Fixed	Tracking, Prediction	-			Outdoor
SDD	Fixed	Tracking, Prediction	-			Outdoor
nuScenes	Vehicle	Detection, Tracking, Prediction	✓	à		Outdoor
Waymo Open	Vehicle	Detection, Tracking, Prediction	✓	\checkmark		Outdoor
Argoverse	Vehicle	Detection, Tracking, Prediction	 ✓ 	à	✓	Outdoor
JRDB	Robot	Detection, Tracking				Indoor & Outdoor
SiT(Ours)	Robot	Detection, Tracking, Prediction	✓	à	\checkmark	Indoor & Outdoor

*†: Multi – layered map

2. SiT Dataset: Real-world Context

- Collected data from dense areas like campuses and public roads
- Authentic Human-Robot Interactions in real-world settings
 - Capturing data without any actors or pre-arranged scenarios

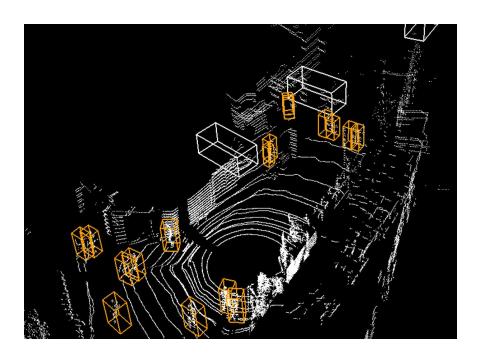

(b) Indoor scene *(Hallway)*

(a) Outdoor scene (Crosswalk)

2. SiT Dataset: Diverse Data Collection

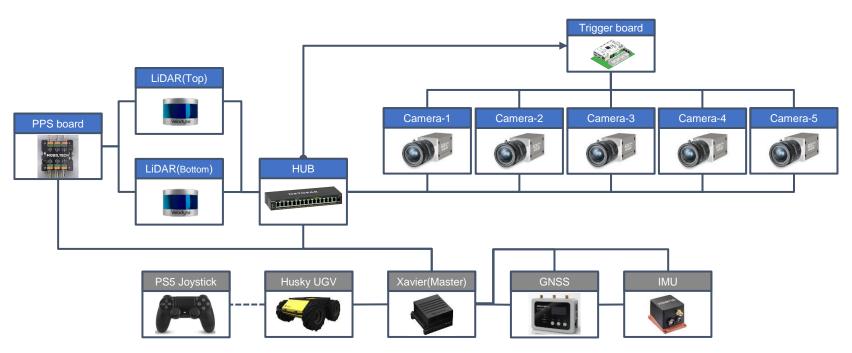
- Sequential raw data from various sensors
 - 60 scenes with 60K images and 12K point cloud frames at 10 Hz
- 2D and 3D bounding boxes for 6 classes
 - Car, bus, truck, pedestrian, cyclist, motorcyclist

Husky UGV platform equipped with various sensors


2. SiT Dataset: Diverse Data Collection

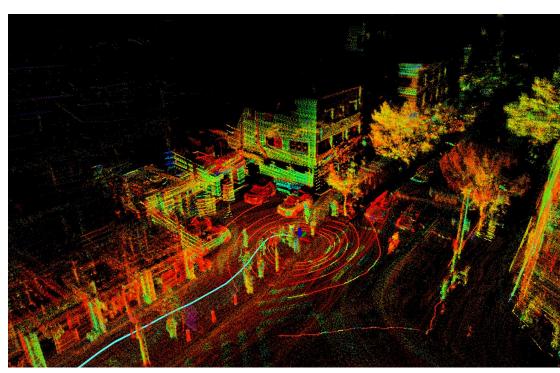
Sgnal Processing & Artificial-Intelligence Laboratory

- Sequential raw data from various sensors
 - 60 scenes with 60K images and 12K point cloud frames at 10 Hz
- 2D and 3D bounding boxes for 6 classes
 - Car, bus, truck, pedestrian, cyclist, motorcyclist



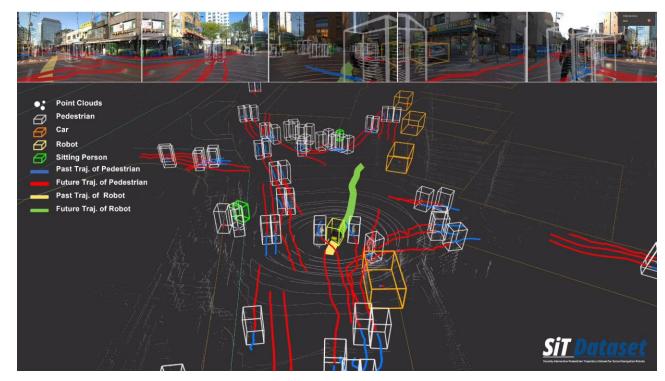
(b) 3D Cuboid labeled on Point Clouds

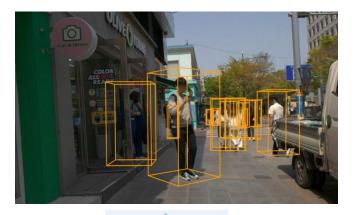
- Precise multi-sensor synchronization
- Multi-layered indoor & outdoor semantic maps from SLAM
- Cover tasks from 3D detection to motion forecasting (End-to-end)
- Emphasis on Human-Robot Interactions (HRI)



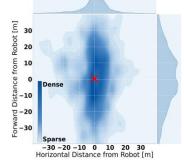
- Precise multi-sensor synchronization
- Multi-layered indoor & outdoor semantic maps from SLAM
- Cover tasks from 3D detection to motion forecasting (End-to-end)
- Emphasis on *Human-Robot Interactions* (HRI)

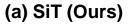
Building Car_road_1 Car_road_2 Crosswalk_1 Crosswalk 2 Walkway Sharedway Road slope Walk slope Static_obstacle Stair Gate

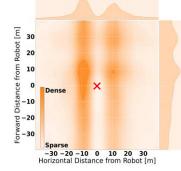

SLAM: Simultaneous Localization And Mapping

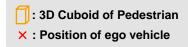


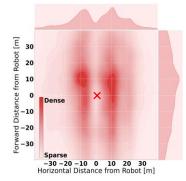
- Precise multi-sensor synchronization
- Multi-layered indoor & outdoor semantic maps from SLAM
- Cover tasks from 3D detection to motion forecasting (End-to-end)
- Emphasis on Human-Robot Interactions (HRI)




Visualization of SiT dataset of outdoor scene (Cafe_Street_3)


- Precise multi-sensor synchronization
- Multi-layered indoor & outdoor semantic maps from SLAM
- Cover tasks from 3D detection to motion forecasting (End-to-end)
- Emphasis on Human-Robot Interactions (HRI)





(b) nuScenes^[7]

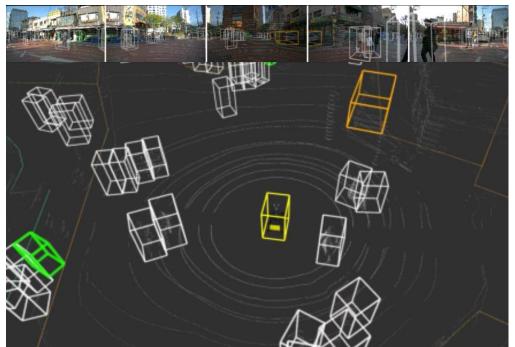
(c) Waymo Open^[8]

- Precise multi-sensor synchronization
- Multi-layered indoor & outdoor semantic maps from SLAM
- Cover tasks from 3D detection to motion forecasting (End-to-end)
- Emphasis on Human-Robot Interactions (HRI)

(a) Approach

(b) Followed by Pedestrians

(c) Avoidance by Robot

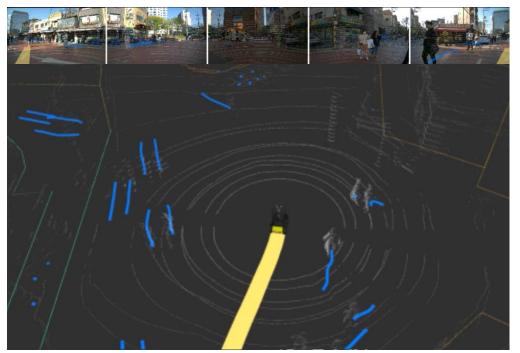

(d) Avoidance by Pedestrians

- 3D object detection based on image and point clouds
- 3D multi-object tracking
- Trajectory prediction
- End-to-end 3D detection to motion forecasting
- Challenges open on Eval.AI (Feb. 2024)

Methods	Modality	$\mathbf{mAP}\uparrow$	$\mathrm{AP}(0.25)\uparrow$	$\mathrm{AP}(0.5)\uparrow$	$ ext{AP(1.0)} \uparrow$	$\mathrm{AP}(2.0)\uparrow$
FCOS3D [33]	Camera	0.244	0.024	0.159	0.329	0.463
PointPillars [15]	LiDAR	0.351	0.260	0.354	0.374	0.418
Centerpoint-P [39]	LiDAR	0.414	0.300	0.424	0.446	0.486
Centerpoint-V [39]	LiDAR	0.518	0.397	0.531	0.553	0.592
TransFusion-P [2]	LiDAR+Camera	0.390	0.248	0.371	0.437	0.507
TransFusion-V [2]	LiDAR+Camera	0.531	0.318	0.536	0.607	0.665

Evaluation of 3D pedestrian detection baselines.

3D cuboids on each object



- 3D object detection based on image and point clouds
- 3D multi-object tracking
- Trajectory prediction
- End-to-end 3D detection to motion forecasting
- Challenges open on Eval.AI (Feb. 2024)

Methods	$\mathbf{sAMOTA} \uparrow$	AMOTA \uparrow	$AMOTP(m)\downarrow$	MOTA \uparrow	$MOTP(m) \downarrow$. IDS \downarrow
PointPillars [15] + AB3DMOT [34]	0.4110	0.1047	0.3580	0.4086	1.0277	1048
Centerpoint Detector [39] + AB3DMOT [34]	0.4841	0.1398	0.3958	0.4586	0.9836	554
Centerpoint Tracker [39]	0.6070	0.2007	0.2679	0.4760	0.5140	1136

Evaluation of 3D pedestrian tracking baselines.

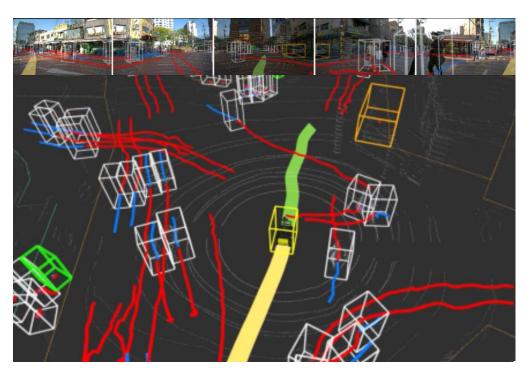
Past trajectories of each object

- 3D object detection based on image and point clouds
- 3D multi-object tracking
- Trajectory prediction
- End-to-end 3D detection to motion forecasting
- Challenges open on Eval.AI (Feb. 2024)

Methods	Map	$\mathrm{ADE}_5\downarrow$	$\mathrm{FDE}_5\downarrow$	$ADE_{20}\downarrow$	$\mathrm{FDE}_{20}\downarrow$
Social-LSTM [1]		1.638	3.121	1.630	3.103
Y-Net [22]		1.527	2.802	0.836	1.878
Y-Net [22]	\checkmark	1.361	2.624	0.675	1.547
NSP-SFM [41]		1.346	2.261	0.634	1.087
NSP-SFM [41]	\checkmark	1.061	1.818	0.517	0.925

Evaluation of pedestrian trajectory prediction baselines

Past and future trajectories of each objects



- 3D object detection based on image and point clouds
- 3D multi-object tracking
- Trajectory prediction
- End-to-end 3D detection to motion forecasting
- Challenges open on Eval.AI (Feb. 2024)

Methods	$\mathbf{mAP}\uparrow$	$\mathbf{mAP_{f}}\uparrow$	$\text{ADE}_5\downarrow$	$\mathrm{FDE}_5\downarrow$
FaF [21]	0.490	0.079	1.915	3.273
FutureDet-P [26]	0.209	0.037	2.532	4.537
FutureDet-V [26]	0.408	0.053	2.416	4.409

Evaluation of end-to-end motion prediction baselines.

3D cuboids, past and future trajectories of each object

- 3D object detection based on image and point clouds
- 3D multi-object tracking
- Trajectory prediction
- End-to-end 3D detection to motion forecasting
- Challenges open on Eval.AI (Feb. 2024)

4. Conclusion

- **SiT Dataset**: Socially interactive Pedestrian Trajectory Dataset for Social Navigation Robots
 - Include diverse pedestrian trajectories captured in human-robot interactive scenarios
 - High-quality 2D and 3D annotations for various perception tasks
 - 12-layered semantic maps covering a wide range of scene information
 - Facilitate design of end-to-end motion prediction models

References

- [1] Starship: food delivering robot, https://en.wikipedia.org/wiki/Delivery_robot
- [2] Dadawan: serving robot, https://www.businessinsider.com/robot-serves-food-takes-temperatures-covid-19-in-the-netherlands-2020-6#next-the-human-staff-still-have-to-actually-take-orders-from-a-safe-distance-6
- [3] Airstar: guide robot, https://m.hankookilbo.com/News/Read/201807111499787598
- [4] ETH-Hotel, https://icu.ee.ethz.ch/research/datsets.html
- [5] UCY-Zara, https://www.youtube.com/watch?v=jyKO4rGDn0o
- [6] SDD, https://www.youtube.com/watch?v=c6xQ6iz6wH8
- [7] nuScenes, https://www.nuscenes.org/
- [8] Waymo Open, https://waymo.com/open/
- [9] JRDB, https://jrdb.erc.monash.edu/

End of Document