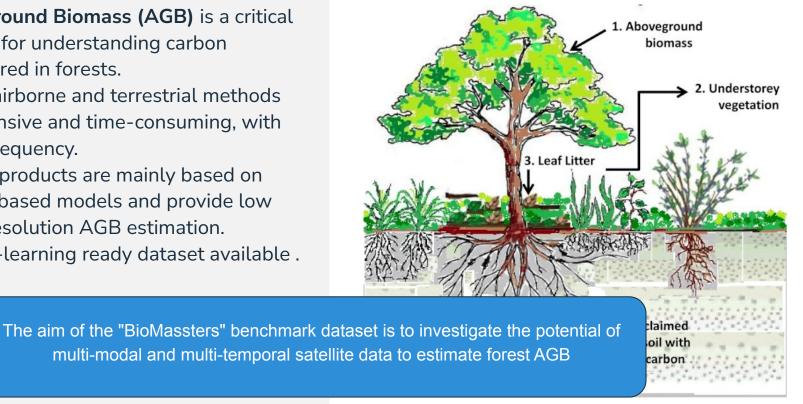
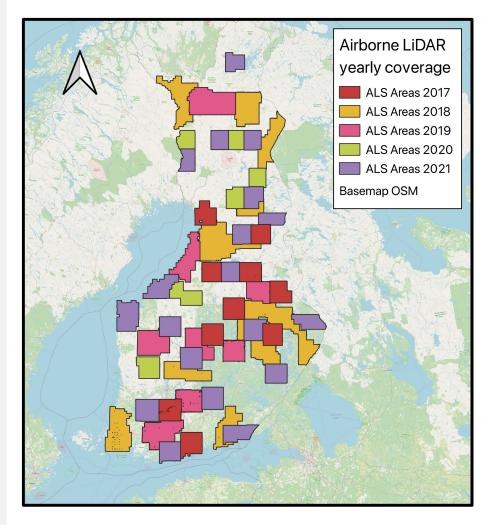


BioMassters: A Benchmark Dataset for Forest Biomass Estimation using Multi-modal Satellite Time-series

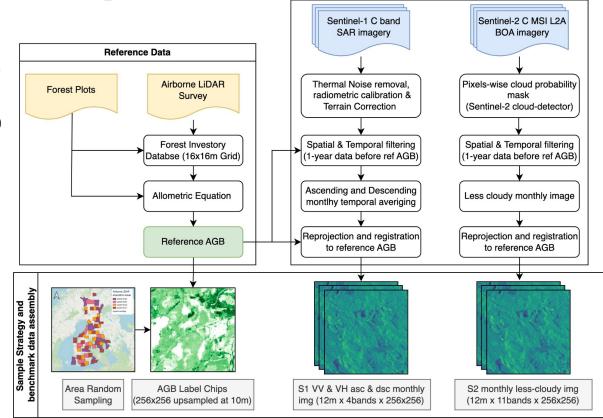
Andrea Nascetti · Ritu Yadav · Kirill Brodt · Qixun Qu · Hongwei Fan · Yuri Shendryk · Isha Shah · Christine Chung



Problem Statement


- AboveGround Biomass (AGB) is a critical measure for understanding carbon sequestered in forests.
- Current airborne and terrestrial methods are expensive and time-consuming, with limited frequency.
- Satellite products are mainly based on physical based models and provide low spatial resolution AGB estimation.
- No deep-learning ready dataset available.

Biomasster Dataset:


Reference Airborne LiDAR data

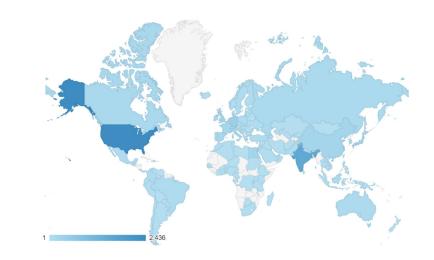
- LiDAR acquisition from 2017 to 2021 covering entire Finland
- Open Data by the Finland Forest Centre (CC-BY-4.0)
- Data in 16 m × 16 m regular grid including tree attributes e.g., tree species, number of trees, trunk diameter, tree height, and more
- Calibrated allometric equation to compute AGB
- Approx 13000 patches, with patch size 256 × 256 at 10 m resolution

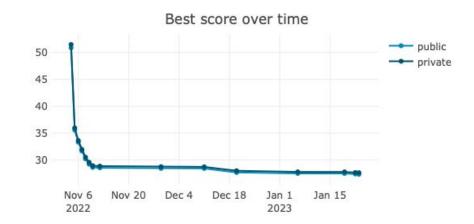
Satellite Data Pre-Processing

- Two Modalities:
 - Synthetic Aperture Radar (SAR) Sentinel-1
 - Multi-spectral Sentinel-2 (wavelengths from 400 to 2400 nm)
- Multi-temporal images:
 - Yearly time series
 - One image per month
 - Few missing images for some months (e.g. Dec. 2019)

Satellite Data

The BioMassters Competition


Hosted by Driven Data & supported by MathWorks

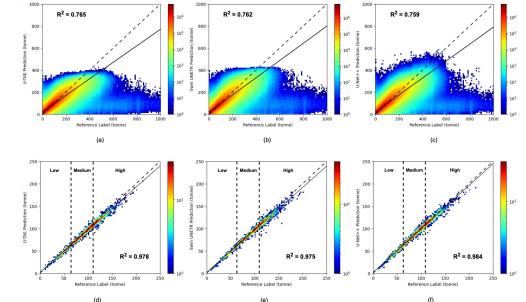

Quick facts:

- 976 participants
- 1049 submissions
- 90 active teams

Holdout test set, 30 % from 2018, 2020, and 2021, and 20 % from 2019 data

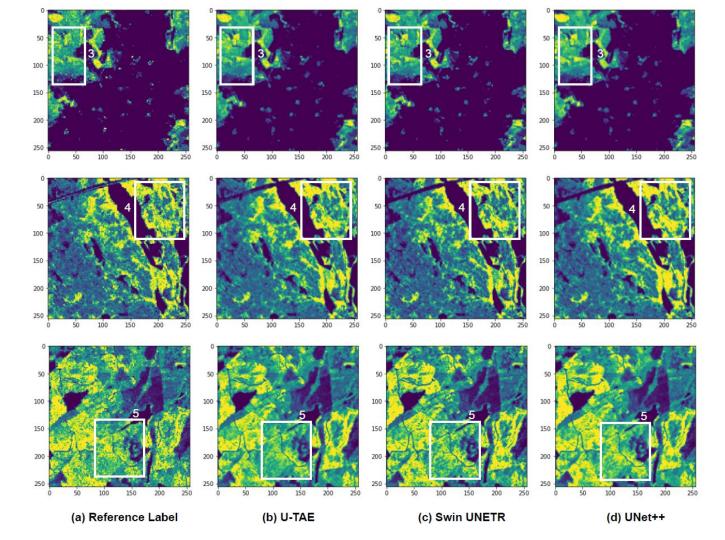
Metric: Average RMSE in tonnes per pixel

Top-Three Model Results

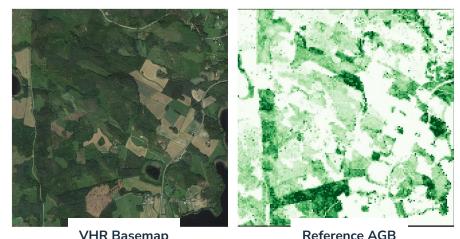

Top-three models are an adaptation of the following architectures:

- 1. U-TAE (U-Net Temporal Attention Encoder)
- 2. Swin UNETR (Swin U-Net TRansformer)
- 3. U-Net++

Implementations:


https://github.com/drivendataorg/

the-biomassters


Method	Low Density	Medium Density	High Density	Overall
Average $RMSE \pm Std$.				
U-TAE [14]	15.24 ±4.29	28.55 ±9.89	37.59 ±11.02	27.49 ± 12.14
Swin UNETR [19]	15.25 ± 4.41	28.61 ± 9.85	37.64 ± 11.09	27.53 ± 12.16
U-Net++ [50] Ensembled	15.60 ± 4.35	29.01 ± 9.80	$38.04{\pm}10.93$	27.92 ± 12.11
Average Bias \pm Std.				
U-TAE [14]	0.054 ± 15.84	0.37 ± 30.22	1.76 ± 39.14	0.64 ± 30.04
Swin UNETR [19]	0.43 ± 15.88	0.92 ± 30.25	2.37 ± 39.17	1.16 ± 30.08
U-Net++ [50] Ensembled	-0.37 ± 16.19	-0.62 ± 30.62	0.49 ± 39.58	-0.28 ± 30.43

Conclusions & Future Prospects

- We released the first deep-learning ready dataset for AGB estimation from multi-modal and multi-temporal satellite time series
- We compare the obtained results with existing globally available satellite products derived from Sentinel images
- We show the potential of deep-learning model to obtained accurate estimation of the AGB at higher spatial resolution (10m vs 100m)
- The dataset could be extended to other regions to investigate the generalization capability of the model

VHR Basemap

U-TAE Prediction