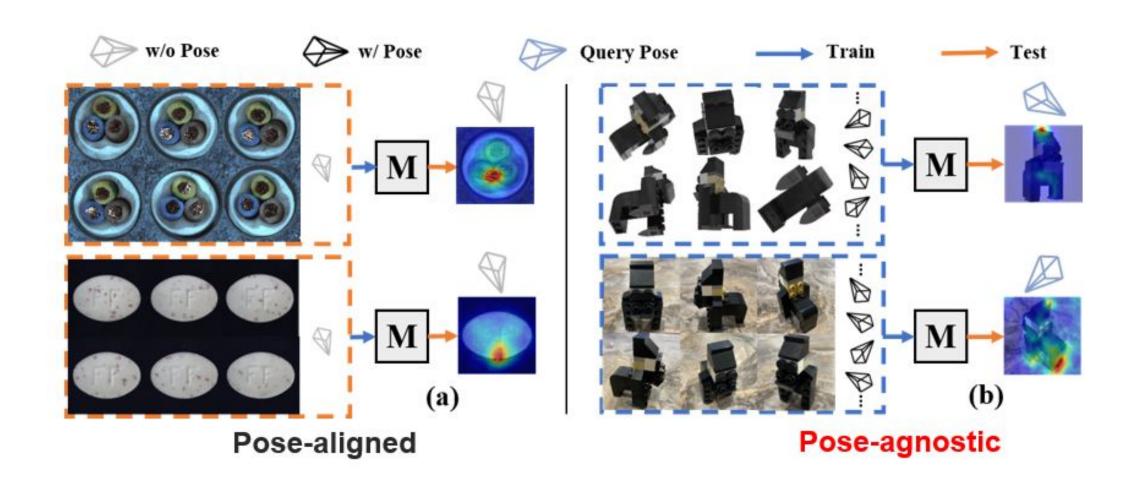


PAD: A Dataset and Benchmark for Pose-agnostic Anomaly Detection

NeurIPS 2023 Datasets and Benchmarks Track

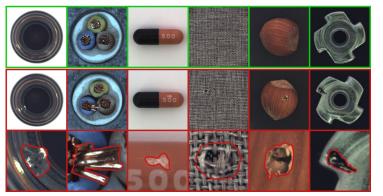
Qiang Zhou^{1*}, **Weize Li^{1*}(Presentor)**, Lihan Jiang², Guoliang Wang¹, Guyue Zhou¹, Shanghang Zhang³, Hao Zhao¹

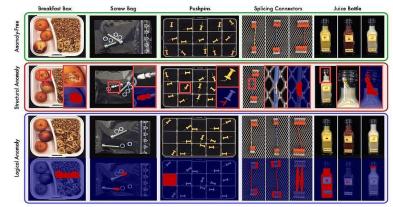
¹AIR, Tsinghua University, ²Wuhan University, ³ Peking University

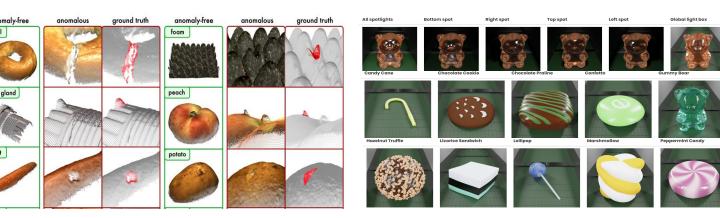


Motivation

Contribution #1: Pose-agnostic Anomaly Detection Setting


- For object anomaly detection from diverse viewpoints or poses.
- Breaking free from the constraints of stereotypical pose-aligned setting.
- Taking a step forward to practical anomaly detection and localization tasks.
- PAD setting:


Given a training set $\mathcal{T} = \{t_i\}_{i=1}^N$, in which $\{t_1, t_2, \cdots, t_N\}$ are the anomaly-free samples from object's multi pose view and each sample t consists of a RGB image $I_{\rm rgb}$ w/ pose information $\theta_{\rm pose}$. In addition, \mathcal{T} belongs to certain object o_j , $o_j \in \mathcal{O}$, where \mathcal{O} denotes the set of all objects categories. During testing, given a query (normal or abnormal) image \mathcal{Q} from object o_j w/o pose information $\theta_{\rm pose}$, the pre-trained AD model M should discriminate whether or not the query image \mathcal{Q} is anomalous and localize the pixel-wise anomaly region if the anomaly is detected.

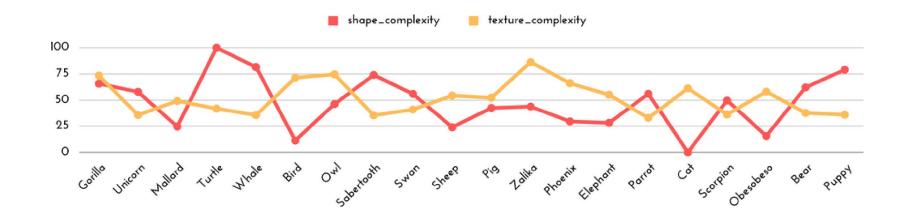

Challenges:

NEURAL INFORMATION PROCESSING SYSTEMS

1) We lack anomaly detection datasets from multiple pose views of an object.

- w/o Multi-pose views
- w/o Pose annotations
- Do not want to use point cloud data that is difficult and expensive to collect.

.


Contribution #2: Multi-pose Anomaly Detection Dataset

- Selected 20 Lego toys with diverse shapes and colors.
- Provided 11,000+ high-resolution RGB images from multi-pose view.
- Divided into MAD-Simulated Set + MAD-Real Set.
- Supported by Pixel-precise Ground Truth for 3 types of defects.

Contribution #2: Multi-pose Anomaly Detection Dataset

Quantified the attributes of each Lego toy in shape complexity and texture complexity.

2) We lack criteria for evaluating the performance of pose-agnostic anomaly detection models.

But fair benchmarking?

Contribution #3: PAD Benchmark

Feature Embedding-based Reconstruction-based

Patchcore

STFPM

Fastflow

CFlow

Cutpaste

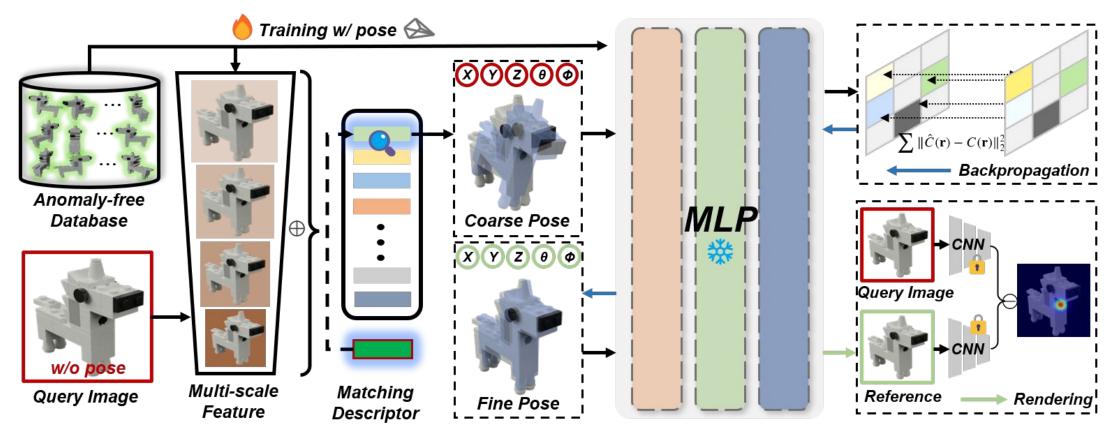
DRAEM

FAVAE

OCR-GAN

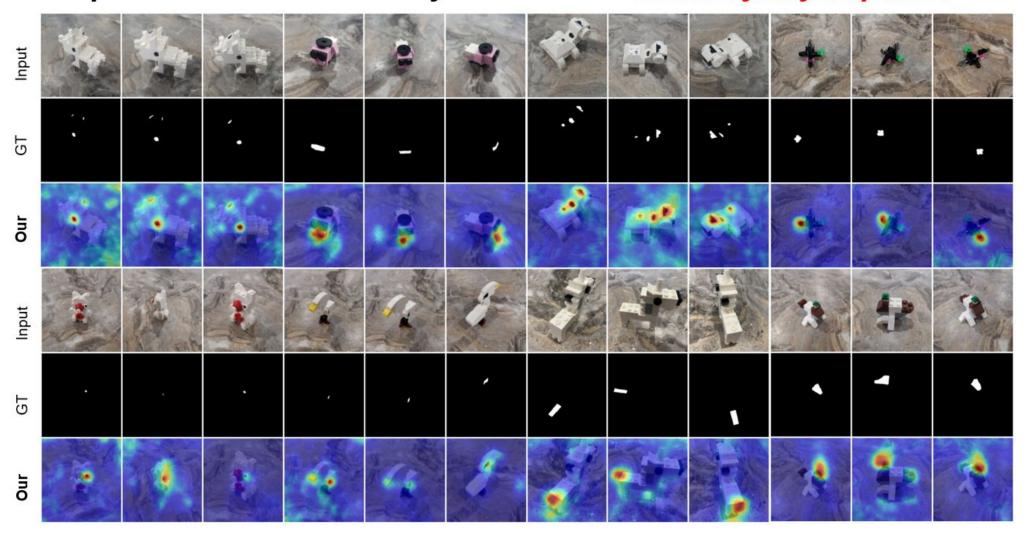
UniAD

Pseudo-anomaly Cutpaste DRAEM

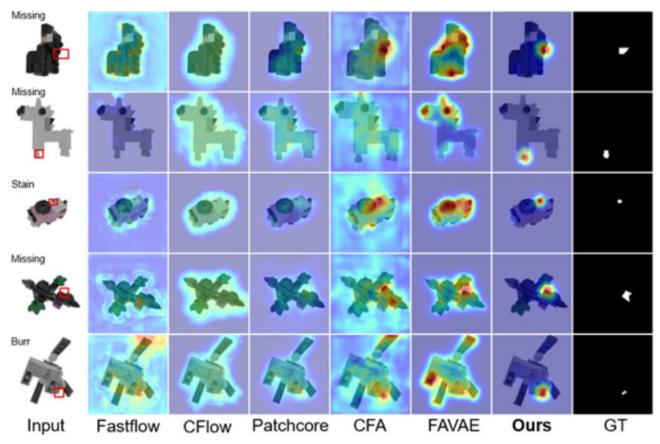

Category			Feature Embedding-based					Reconstruction-based			
	Patchcore [32]	STFPM[45]	Fastflow [59]	CFlow[18]	CFA[21]	Cutpaste [22]	DRAEM[16]	FAVAE[51]	OCRGAN 28	UniAD 57	Ours
Gorilla	88.4/66.8	93.8/65.3	91.4/51.1	94.7/69.2	91.4/41.8	36.1/-	77.7/58.9	92.1/46.8	94.2/-	93.4/56.6	99.5/93.6
Unicorn	58.9/92.4	89.3/79.6	77.9/45.0	89.9/82.3	85.2/85.6	69.6/-	26.0/70.4	88.0/68.3	86.7/-	86.8/73.0	98.2/94.0
Mallard	66.1/59.3	86.0/42.2	85.0/72.1	87.3/74.9	83.7/36.6	40.9/-	47.8/34.5	85.3/33.6	88.9/-	85.4/70.0	97.4/84.7
Turtle	77.5/87.0	91.0/64.4	83.9/67.7	90.2/51.0	88.7/58.3	77.2/-	45.3/18.4	89.9/82.8	76.7/-	88.9/50.2	99.1/95.6
Whale	60.9/86.0	88.6/64.1	86.5/53.2	89.2/57.0	87.9/77.7	66.8/-	55.9/65.8	90.1/62.5	89.4/-	90.7/75.5	98.3/82.5
Bird	88.6/82.9	90.6/52.4	90.4/76.5	91.8/75.6	92.2/78.4	71.7/-	60.3/69.1	91.6/73.3	99.1/-	91.1/74.7	95.7/92.4
Owl	86.3/72.9	91.8/72.7	90.7/58.2	94.6/76.5	93.9/74.0	51.9/-	78.9/67.2	96.7/62.5	90.1/-	92.8/65.3	99.4/88.2
Sabertooth	69.4/76.6	89.3/56.0	88.7/70.5	93.3/71.3	88.0/64.2	71.2/-	26.2/68.6	94.5/82.4	91.7/-	90.3/61.2	98.5/95.7
Swan	73.5/75.2	90.8/53.6	89.5/63.9	93.1/67.4	95.0/66.7	57.2/-	75.9/59.7	87.4/50.6	72.2/-	90.6/57.5	98.8/86.5
Sheep	79.9/89.4	93.2/56.5	91.0/71.4	94.3/80.9	94.1/86.5	67.2/-	70.5/59.5	94.3/74.9	98.9/-	92.9/70.4	97.7/90.1
Pig	83.5/85.7	94.2/50.6	93.6/59.6	97.1/72.1	95.6/66.7	52.3/-	65.6/64.4	92.2/52.5	93.6/-	94.8/54.6	97.7/88.3
Zalika	64.9/68.2	86.2/53.7	84.6/54.9	89.4/66.9	87.7/52.1	43.5/-	66.6/51.7	86.4/34.6	94.4/-	86.7/50.5	99.1/88.2
Phoenix	62.4/71.4	86.1/56.7	85.7/53.4	87.3/64.4	87.0/65.9	53.1/-	38.7/53.1	92.4/65.2	86.8/-	84.7/55.4	99.4/82.3
Elephant	56.2/78.6	76.8/61.7	76.8/61.6	72.4/70.1	77.8/71.7	56.9/-	55.9/62.5	72.0/49.1	91.7/-	70.7/59.3	99.0/92.5
Parrot	70.7/78.0	84.0/61.1	84.0/53.4	86.8/67.9	83.7/69.8	55.4/-	34.4/62.3	87.7/46.1	66.5/-	85.6/53.4	99.5/97.0
Cat	85.6/78.7	93.7/52.2	93.7/51.3	94.7/65.8	95.0/68.2	58.3/-	79.4/61.3	94.0/53.2	91.3/-	93.8/53.1	97.7/84.9
Scorpion	79.9/82.1	90.7/68.9	74.3/51.9	91.9/79.5	92.2/91.4	71.2/-	79.7/83.7	88.4/66.9	97.6/-	92.2/69.5	95.9/91.5
Obesobeso	91.9/89.5	94.2/60.8	92.9/67.6	95.8/80.0	96.2/80.6	73.3/-	89.2/73.9	92.7/58.2	98.5/-	93.6/67.7	98.0/97.1
Bear	79.5/84.2	90.6/60.7	85.0/72.9	92.2/81.4	90.7/78.7	68.8/-	39.2/76.1	90.1/52.8	83.1/-	90.9/65.1	99.3/98.8
Puppy	73.3/65.6	84.9/56.7	80.3/59.5	89.6/71.4	82.3/53.7	43.2/-	45.8/57.4	85.6/43.5	78.9/-	87.1/55.6	98.8/93.5
Mean	74.7/78.5	89.3/59.5	86.1/60.8	90.8/71.3	89.8/68.2	59.3/-	58.0/60.9	89.4/58.0	88.5/-	89.1/62.2	97.8/90.9

NEURAL INFORMATION PROCESSING SYSTEMS

3) We lack a baseline method for pose-agnostic anomaly detection setting.


Contribution #4: OmniposeAD

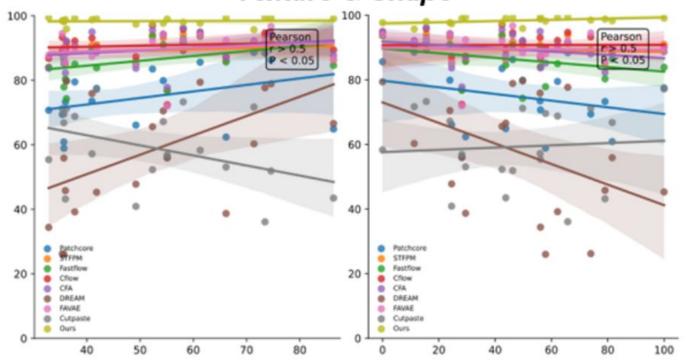
◆ OmniposeAD enables anomaly detection for arbitrary object poses.


Experiments Result

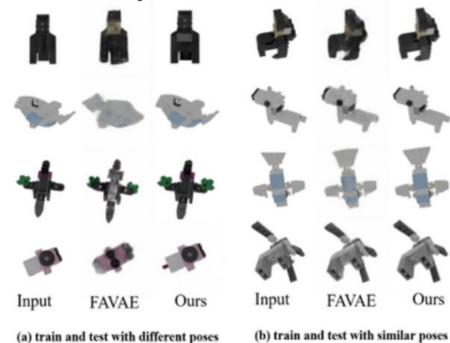
 OmniposeAD's Dense to sparse view evaluation on MAD-Real.

Sample Size	10	0	70	0	50	
Object Class	Image	Pixel	Image	Pixel	Image	Pixe
Gorilla	93.6	99.5	85.4	97.5	91.0	97.4
Unicorn	86.2	96.5	84.4	96.1	80.2	94.9
Mallard	87.3	96.3	80.3	94.4	74.6	95.1
Turtle	99.1	95.4	95.1	92.3	83.4	90.4
Whale	82.1	98.5	82.5	97.0	76.0	93.1
Bird	92.0	95.1	91.6	91.7	89.1	93.4
Owl	89.1	99.3	78.8	98.1	89.1	98.8
Sabertooth	93.8	97.8	84.9	95.1	81.5	94.4
Swan	80.1	98.0	77.0	97.3	71.3	96.7
Sheep	84.3	97.6	83.2	97.6	82.3	92.8
Sample Size	e 100		7	0	50	
Object Class	Image	Pixel	Image	Pixel	Image	Pixe
Pig	75.7	96.4	73.9	95.7	72.8	95.4
Zalika	88.2	99.1	78.8	96.8	72.8	96.0
Phoenix	86.0	99.4	84.6	99.2	82.6	98.8
Elephant	91.0	98.1	82.5	95.9	85.1	96.5
Parrot	91.5	99.1	85.5	98.2	87.9	96.9
Cat	78.9	97.6	73.5	97.6	73.7	97.1
Scorpion	87.4	94.2	77.0	91.8	74.3	91.5
Obesobeso	88.5	96.1	86.4	97.9	81.8	97.8
Bear	97.8	99.3	92.0	98.0	87.8	97.9
Puppy	93.1	98.5	86.5	95.8	80.3	95.3

Qualitative results on MAD-Sim.



Experiments Result



Correlation of performance with object attributes:

Reference Reconstruction: Texture & Shape

OmniposeAD vs. FAVAE

Thanks!

Check out our paper/dataset on arXiv/Github:

