

SynMob: Creating High-Fidelity Synthetic GPS Trajectory Dataset for Urban Mobility Analysis

Yuanshao Zhu^{1,2*}, Yongchao Ye^{1*}, Ying Wu^{1,3}, Xiangyu Zhao^{2†}, James J.Q. Yu^{4†} ¹ Southern University of Science and Technology ² City University of Hong Kong ³University of Leeds ⁴University of York {zhuys2019, 12032868, 12059004}@mail.sustech.edu.cn xianzhao@cityu.edu.hk james.yu@york.ac.uk

Motivations

Urban mobility analysis

- Data sources
 - GPS
 - Public transportation records
 - Application usage

> Applications

- Transportation planning and management
- Public health and epidemiology

Existing Dataset Issues

- Lack of publicly available trajectory datasets.
- Strict regulations and data privacy concerns limit the accessibility of trajectory data.
- Suffering from inconsistent format and poor quality.

Dataset	GPS trajectory	Availability	Data quality	Privacy	# Trajectory
GeoLife ³ [47]	✓	✓	×	×	17,621
T-drive ⁴ [39]	\checkmark	\checkmark	×	×	10,357
Porto ⁵ [22]	\checkmark	\checkmark	×	×	1.7 million
Foursquare ⁶ [37]	×	\checkmark	_	X	104,478
NYC^7	×	\checkmark	_	X	1.1 billion
Taxi-Shanghai ⁸	\checkmark	×	×	X	1.2 million
GAIA ⁹	1	×	\checkmark	×	3.1 million
Ours (Synthetic)	1	✓	1	1	unrestricted (customize)

Using diffusion model as the trajectory synthesizer

• Original dataset

Ride-hailing trajectories in Chengdu & Xi'an

Dataset	Trajectory Number	Average Time	Average Distance
Chengdu Xi'an	$\frac{3493918}{2180348}$	$\begin{array}{c} 11.42\mathrm{min}\\ 12.58\mathrm{min} \end{array}$	$\begin{array}{c} 7.42\mathrm{km} \\ 5.73\mathrm{km} \end{array}$

Chengdu Trajectory

Chengdu Heatmap

Xi'an Trajectory

Xi'an Heatmap

1. Overview of two synthetic dataset

- ✓ Privacy free: It provides privacy protection by generating trajectories process.
- ✓ High fidelity: It has high fidelity, with similar statistical features as the original dataset.
- ✓ Public availability: It publicly available without violating regulations.
- ✓ Scalability: It can generate an arbitrary amount of synthetic trajectories.
- ✓ **Enhancing diversity**: It offers various trajectory patterns.

Table 2: Dataset description of SYN-CHENGDU

Туре	Description		
Format Size Value type Time frame Sample interval	pickle / geoparquet 4.39 GB float64 5 min 3 s lat: $30.65^{\circ} \propto 30.73^{\circ}$		
Spatial coverage	lng: $104.04^{\circ} \sim 104.13^{\circ}$		

Table 5: Dataset description of SYN-XI'AN

Туре	Description		
Format	pickle / geoparquet		
Value type	float64		
Time frame	5 min		
Sample interval	3 s		
Spatial coverage	lat: $34.20^{\circ} \sim 34.28^{\circ}$ lng: $108.90^{\circ} \sim 108.99^{\circ}$		

2. Geographic visualization (cases)

The synthetic trajectories are richly diverse, reflecting multiple and complex mobility patterns.

Same origin and destination

Different origin and destination

3. Trajectories geo-distribution insight

The synthetic trajectories successfully adhere to the geo-distribution and sparse properties compare to the original counterparts. It can also maintain consistent start and end areas.

(a) Original trajectories.

(b) Synthetic trajectories with area zoom.

(c) Same start-end areas.

end

(b) Synthetic trajectories with area zoom. (c) Same start-end areas.

4. Spatial-temporal distribution

- The synthetic trajectory dataset can maintain a high degree of spatial distribution consistency.
- The synthetic trajectory dataset also ensures consistent distribution at the temporal level.

0.004

5. Trajectories properties

The synthetic dataset showing a strong adherence to the trajectory level properties observed in the original data

6. Data utility case studies

Travel demand prediction

Problem: predict the vehicle inflow or outflow x_d^t for a given area d at time t (time-series prediction)

 $\left[x^{t-H+1},\ldots,x^t\right] \rightarrow \left[x^{t+1},\ldots,x^{t+h}\right]$

Methods: representative ST prediction model

original / synthetic / difference ratio (%)

Methods	AGCRN	GWNet	DCRNN	MTGNN
RMSE	6.91 / 6.50 / 5.93%	6.90 / 6.53 / 5.36%	7.29 / 6.48 / 11.11%	6.81 / 6.41 / 5.87%
MAE	4.64 / 4.43 / 4.53%	4.65 / 4.47 / 3.87%	4.88 / 4.45 / 8.81%	4.58 / 4.39 / 4.15%
MAPE	30.47/ 30.97 / 1.64%	30.57 / 30.74 / 0.56%	32.40 / 30.40 / 6.17%	29.61 / 29.88 / 0.91%

Travel time estimation

Problem: estimate the travel time between a pair of origins and destinations

$$[o,d,t,V] \rightarrow y, V = \{v_1,v_2,\ldots,v_m\}$$

Methods: representative ML/DL TTE models

	-	-		
Methods	TEMP	XGBoost	WDR	DeepTTE
RMSE	290.32 / 282.33 / 2.75%	271.56 / 256.19 / 5.66%	258.64 / 247.29 / 4.39%	216.93 / 193.34 / 10.87%
MAE	182.74 / 174.42 / 4.55%	175.20 / 167.75 / 4.25%	149.81 / 140.05 / 6.51%	132.95 / 121.31 / 8.76%
MAPE	18.62 / 17.81 / 4.30%	17.97 / 16.94 / 5.73%	14.06 / 13.17 / 6.33%	13.07 / 12.29 / 5.97%

original / synthetic / difference ratio (%)

Conclusion

- Conclusion
 - A trajectory generation model based on diffusion model
 - A high-fidelity synthetic trajectory dataset for urban mobility analysis

- Limitations
 - Raw data is still needed in the training stage
 - Only focus on one travel mode (ride-hailing trajectories)
 - Large computational cost of generative models

Thank You!

Yuanshao Zhu

zhuys2019@mail.sustech.edu.cn Southern University of Science and Technology City University of Hong Kong

