Temporal Graph Benchmark for Machine Learning on Temporal Graphs

Website, Paper, Github, Pypi, Documentation https://tgb.complexdatalab.com/

NeurIPS 2023 Datasets and Benchmarks Track Presented by Shenyang Huang

Shenyang Huang Mila, McGill University

Farimah Poursafaei Mila, McGill University

Jacob Danovitch Mila, McGill University

Matthias Fey kumo.ai

TGB team

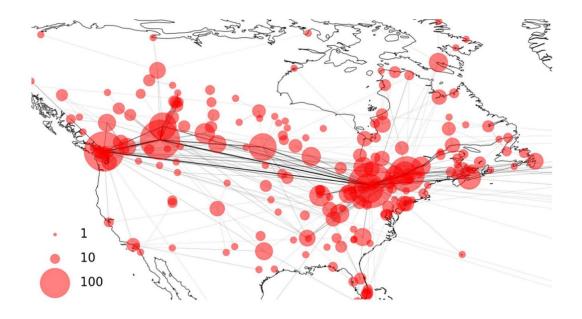
Weihua Hu

kumo.ai

Emanuele Rossi Imperial College London Jure Leskovec Stanford University

Michael Bronstein University of Oxford

Guillaume Rabusseau Mila, Université de Montréal, CIFAR Al Chair



Reihaneh Rabbany Mila, McGill University, CIFAR

AI Chair

Many Networks are Temporal

- Social Networks
- Traffic Networks
- Financial Networks
- Political Networks
- Interaction Networks
- More

Canadian Flight Network on April 2nd, 2020

Incorporating dynamic fight network in SEIR to model mobility between populations

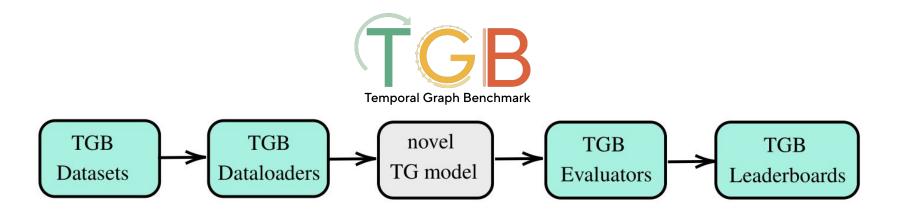
Continuous Time Dynamic Graphs

Timestamped edge streams G = { $(s_0, d_0, t_0), (s_1, d_1, t_1), ..., (s_T, d_T, t_T)$ }

With node features X_t and edge features M_t

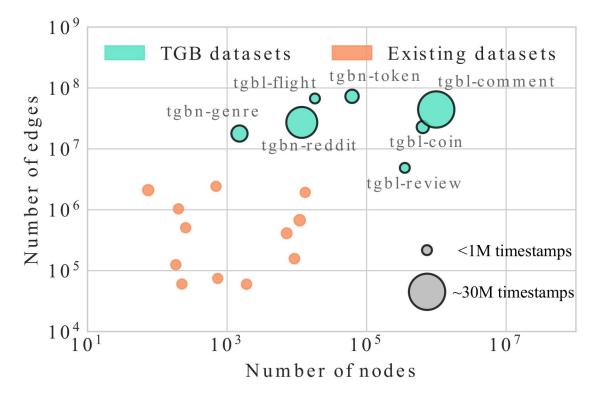
Streaming setting: previously observed test edges can be accessed by the model but back-propagation and weight updates with the test information are not permitted.

Motivations for TGB


1. Lack of realistic and large scale datasets.

2.

Lack of standardized evaluation similar to OGB for TG.


3. High performance of methods hinders the ability to differentiate methods.

Poursafaei et al. Towards Better Evaluation for Dynamic Link Prediction, 2022

- Large-scale and realistic datasets from five domains
- ► Both dynamic **link** and **node** property prediction task
- ► TGB package automatically downloads datasets and processes them in numpy, PyTorch and PyG
- ► **Reproducible and Realistic** Evaluation Protocol
- Public and Online Leaderboard to track recent developments

TGB Datasets

Orders of magnitude larger than standard benchmark datasets in nodes, edges and timestamps

Dynamic Link Property Prediction

> Predict property (often existence) of a link at a future timestamp

Link Prediction Evaluation for an edge (u,v,t)

- sample k negative edges with the same source u, at time t
- sample half historical edges and half random negatives
- evaluated by Mean Reciprocal Rank (MRR)

a sampled set of negative edges are provided for each dataset for reproducibility

Surprise Index & Method Ranking

Table 2: Results for *dynamic link property prediction* on small datasets.

Method	MRR Validation Test		Method	MRR Validation Test			
DyRep [42]	$ 0.072 \pm 0.009 $	0.050 ± 0.017	DyRep [42]	0.216 ± 0.031	0.220 ± 0.030		
TGN [35]	0.435 ± 0.069	$0.396{\scriptstyle\pm0.060}$	TGN [35]	0.313 ± 0.012	$0.349{\scriptstyle\pm0.020}$		
CAWN [46]	0.743 ± 0.004	$\underline{0.711} \pm 0.006$	CAWN[46]	0.200 ± 0.001	$0.193{\scriptstyle\pm0.001}$		
TCL [45]	0.198 ± 0.016	$0.207{\scriptstyle\pm0.025}$	TCL [45]	0.199 ± 0.007	$0.193{\scriptstyle \pm 0.009}$		
GraphMixer [9]	0.113 ± 0.003	$0.118{\scriptstyle\pm0.002}$	GraphMixer [9]	0.428 ±0.019	$0.521{\scriptstyle\pm0.015}$		
TGAT [48]	0.131 ± 0.008	$0.141 {\pm} 0.007$	TGAT [48]	0.324 ± 0.006	$\underline{0.355}{\pm}0.012$		
NAT [25]	0.773 ±0.011	$0.749{\scriptstyle\pm0.010}$	NAT [25]	0.302 ± 0.011	$0.341{\scriptstyle\pm0.020}$		
EdgeBank _{tw} [33]	0.600	0.571	EdgeBank _{tw} [33]	0.0242	0.0253		
EdgeBank _{∞} [33]	0.527	0.495	EdgeBank $_{\infty}$ [33]		0.0229		

tgbl-wiki *Surprise index* = 0.108

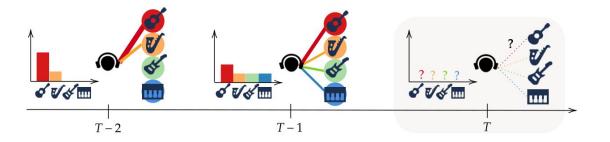
tgbl-review *Surprise index* = 0.987

Surprise index =
$$\frac{|E_{test} \setminus E_{train}|}{|E_{test}|}$$

Method rankings change significantly with different surprise index

Medium and Large Datasets

Method	tgbl-coin MRR Validation Test		tgbl-comment MRR Validation Test		tgbl-flight MRR Validation Test	
	0.607±0.014	$\frac{0.586 \pm 0.037}{0.580}$	0.356 ± 0.019			
	Medium scale		Large scale		Large scale	


- ► Many TG methods are too expensive to run on the larger datasets can take weeks or more
- Develop scalable methods is an important direction

Dynamic Node Property Prediction

Predict property of a node at a future timestamp

Node affinity Prediction Task

- Predict how the preference of a user towards items change over time
- Uses Normalized Discounted Cumulative Gain (NDCG) metric

* Node classification and other tasks to be added in the future

Table 4: Node affinity prediction results.

Method	tgbn-trade NDCG@10		tgbn-genre NDCG@10		tgbn-reddit NDCG@10		tgbn-token NDCG@10	
	Validation	Test	Validation	Test	Validation	Test	Validation	Test
DyRep [42]	0.394 ± 0.001	$0.374{\scriptstyle\pm0.001}$	$ 0.357 \pm 0.001 $	$0.351{\scriptstyle\pm0.001}$	$ 0.344 \pm 0.001 $	$0.312{\scriptstyle\pm}0.001$	0.151 ± 0.006	$0.141 {\pm 0.006}$
TGN [35]	$0.395{\scriptstyle\pm0.002}$	$0.374{\scriptstyle\pm0.001}$	0.403 ± 0.010	$\underline{0.367}{\pm 0.058}$	$\underline{0.379} \pm 0.004$	$0.315 {\pm} \text{ 0.020}$	$0.189 {\pm} 0.005$	$0.169 {\pm 0.006}$
persistence Fore. [36]	0.860	0.855	0.350	0.357	0.380	0.369	0.403	0.430
Moving Avg. [31]	<u>0.841</u>	0.823	0.499	0.509	0.574	0.559	0.491	0.508

> Persistence forecast and moving average outperforms TG methods

 \succ A need for TG methods which focuses on node tasks

- Temporal Graph Benchmark
- □ Website: <u>https://tgb.complexdatalab.com/</u>
- Documentation: <u>https://docs.tgb.complexdatalab.com/</u>
- Github: <u>https://github.com/shenyangHuang/TGB</u>
- pip install py-tgb
- □ Welcome to submit to our leaderboard.
- □ Contact: shenyang.huang@mail.mcgill.ca