

OpenGSL: A Comprehensive Benchmark for Graph Structure Learning

Reporter: Zhiyao Zhou

Graph Structure Learning: A Data-centric Perspective

□ Model-centric Research:

Researchers have proposed a series of new models to address issues such as over-smoothing, over-squashing, and expressivity.

However, these model-centric approaches overlook the inherent flaws in the graph structure, and may lead to suboptimal results.

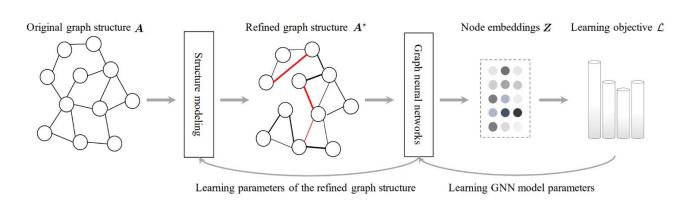
heterophily

sparsity

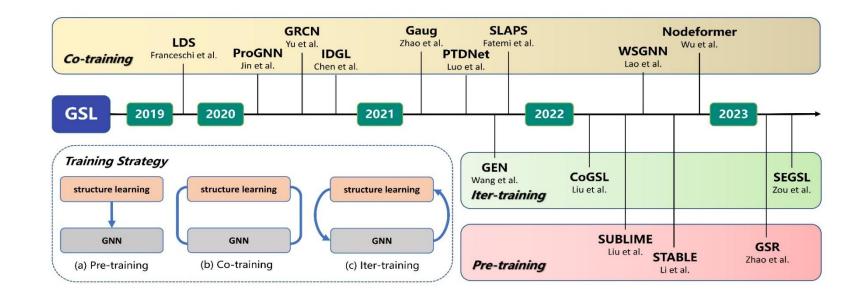
■ Flaws of Graph Structure:

□ Graph Structure Learning:

Graph Structure Learning (GSL) jointly optimizes the graph structure and GNN to learn enhanced graph representations from refined graph structure.



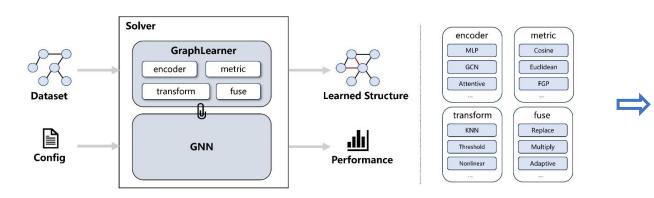
Why OpenGSL?



There lacks a comprehensive benchmark for GSL, which significantly impedes the understanding and progress of GSL in several aspects:

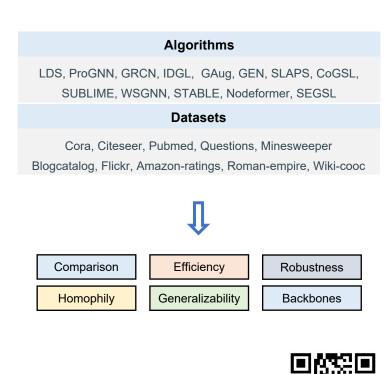
- **D** Different experimental settings.
- □ Lack of understanding of the learned structure.
- **D** Efficiency is overlooked.

Why OpenGSL?



We introduce OpenGSL, the first comprehensive benchmark for GSL

- Fair comparisons through careful reimplementations and unified experimental settings.
- Multi-dimensional analysis thourgh well-designed experiments.



Performance Comparison

Observation 1: For homophilous graphs, many
GSL methods work well in datasets with
balanced classes, while they cannot handle
highly imbalanced situations.

Model	Cora	Citeseer	Pubmed	Questions	Minesweeper
GCN	81.95 ± 0.62	71.34 ± 0.48	78.98 ± 0.35	75.80 ± 0.51	78.28 ± 0.44
LDS	84.13 ± 0.52	75.16 ± 0.43	-	_	-
ProGNN	80.27 ± 0.48	71.35 ± 0.42	79.39 ± 0.29	—	51.43 ± 2.22
IDGL	84.19 ± 0.61	73.26 ± 0.53	$\textbf{82.78} \pm \textbf{0.44}$	50.00 ± 0.00	50.00 ± 0.00
GRCN	84.61 ± 0.34	72.34 ± 0.73	79.30 ± 0.34	74.50 ± 0.84	72.57 ± 0.49
GAug	83.43 ± 0.53	72.79 ± 0.86	78.73 ± 0.77	_	77.93 ± 0.64
SLAPS	72.29 ± 1.01	70.00 ± 1.29	70.96 ± 0.99	_	50.89 ± 1.72
WSGNN	83.66 ± 0.30	71.15 ± 1.01	79.78 ± 0.35	—	67.91 ± 3.11
Nodeformer	78.81 ± 1.21	70.39 ± 2.04	78.38 ± 1.94	72.61 ± 2.29	77.29 ± 1.71
GEN	81.66 ± 0.91	73.21 ± 0.62	78.49 ± 3.98	-	79.56 ± 1.09
CoGSL	81.46 ± 0.88	72.94 ± 0.71	78.38 ± 0.41	_	_
SEGSL	81.04 ± 1.07	71.57 ± 0.40	79.26 ± 0.67	<u> </u>	—
SUBLIME	83.33 ± 0.73	72.44 ± 0.89	80.56 ± 1.32	67.21 ± 0.99	49.93 ± 1.36
STABLE	83.25 ± 0.86	70.99 ± 1.19	81.46 ± 0.78		70.78 ± 0.27

Node classification results on homophilous datasets

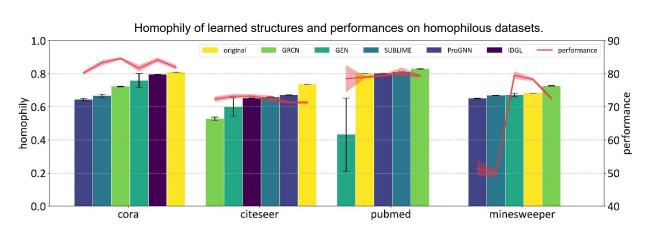
Node classification results on heterophilous datasets

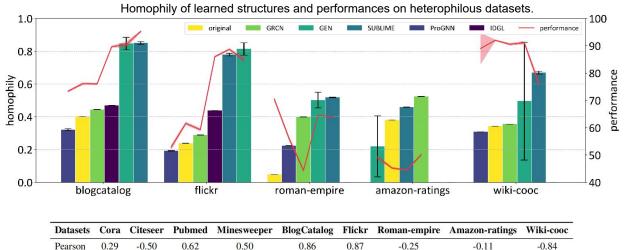
Model	BlogCatalog	Flickr	Amazon-ratings	Roman-empire	Wiki-cooc
GCN	76.12 ± 0.42	61.60 ± 0.49	45.24 ± 0.29	70.41 ± 0.47	92.03 ± 0.19
LDS	77.10 ± 0.27	_	-	_	-
ProGNN	73.38 ± 0.30	52.88 ± 0.76	-	56.21 ± 0.58	89.07 ± 5.59
IDGL	89.68 ± 0.24	86.03 ± 0.25	45.87 ± 0.58	47.10 ± 0.65	90.18 ± 0.27
GRCN	76.08 ± 0.27	59.31 ± 0.46	50.06 ± 0.38	44.41 ± 0.41	90.59 ± 0.37
GAug	76.92 ± 0.34	61.98 ± 0.67	48.42 ± 0.39	52.74 ± 0.48	91.30 ± 0.23
SLAPS	91.73 ± 0.40	83.92 ± 0.63	40.97 ± 0.45	65.35 ± 0.45	89.09 ± 0.54
WSGNN	92.30 ± 0.32	89.90 ± 0.19	42.36 ± 1.03	57.33 ± 0.69	90.10 ± 0.28
Nodeformer	44.53 ± 22.62	67.14 ± 6.77	41.33 ± 1.25	56.54 ± 3.73	54.83 ± 4.43
GEN	90.48 ± 0.99	84.84 ± 0.81	49.17 ± 0.68	_	91.15 ± 0.49
CoGSL	83.96 ± 0.54	75.10 ± 0.47	40.82 ± 0.13	46.52 ± 0.48	
SeGSL	75.03 ± 0.28	60.59 ± 0.54	-	-	-
SUBLIME	95.29 ± 0.26	88.74 ± 0.29	44.49 ± 0.30	63.93 ± 0.27	76.10 ± 1.12
STABLE	71.84 ± 0.56	51.36 ± 1.24	48.36 ± 0.21	41.00 ± 1.18	80.46 ± 2.44

 Observation 2: For heterophilous graphs, GSL methods can be effective on specific datasets.

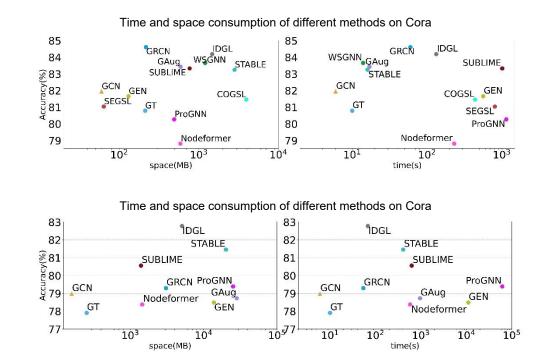
Exploring Homophily

- Observation 3: The homophily of the learned structures varies on homophilous and heterophilous datasets—nearly unchanged on homophilous datasets while significantly improved on hetrophilous datasets.
- Observation 4: Homophily is not always a proper guidance for structure learning. In most cases, we do not observe positive correlation between the performance and the homophily





Efficiency



• Observation 5: Most GSL methods have large time and space consumptions.

Future Directions

- Rethinking the necessity of homophily in GSL. Experiments suggest that the improvements achieved do not necessarily originate from increased homophily.
- Designing adaptive GSL methods for diverse datasets. Current GSL method do not universally work well across diverse datasets.
- Developing task-agnostic GSL methods. Existing works are mainly task-dependent. However, real-world scenarios sometimes require the refinement of a graph structure without accessing the downstream task.
- □ Improving the efficiency of GSL methods. Although some attempts have been made to improve the efficiency, they usually compromise the expressiveness.

Conclusion

We introduce a comprehensive benchmark for graph structure learning (GSL), OpenGSL.

The fair comparison and comprehensive analysis unearth several key findings on this promising research topic.

We believe that this benchmark will have a positive impact on this emerging research domain. We have made our code publicly available and welcome any contributions.

Thank you

Reporter: Zhiyao Zhou