

Live Graph Lab: Towards Open, Dynamic and Real Transaction Graphs with NFT

Zhen Zhang, Bingqiao Luo, Shengliang Lu, Bingsheng He

National University of Singapore

Background

 Graph is a widely used data structure to represent the complex relationships among different entities

Examples include social networks, etc.

 It's usually impractical for us to obtain the whole real-time graphs due to privacy concerns and technical limitations

Background

 In the current literature, studies are usually conducted on a set of outdated and incomplete graphs

Categories	Datasets	Open	Timely Evolving	Complete Structure	Timestamp
Social Network	ego-Twitter [45]	✓	X	×	×
Citation Network	DBLP [70]	✓	×	×	\checkmark
The Web	web-Google [44]	✓	×	×	×
Blockchain	Live Graph Lab	✓	\checkmark	\checkmark	\checkmark

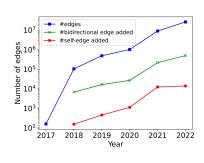
 We need open graph datasets that evolve dynamically and are easily accessible in a timely manner

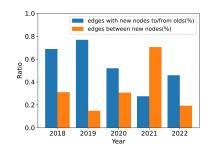
Proposed Datasets

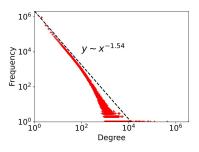
- To bridge this gap, we propose the concept of Live Graph Lab, which provides live graphs according to blockchain transactions
- We offer a set of tools for downloading, parsing, cleaning, and analyzing blockchain transactions to empower the analyses of transaction graphs
 - Getting rid of accessing massive raw transaction data
 - Providing considerable opportunities for temporal graph studies

Proposed Datasets


 We synchronize a full Ethereum node to continuously keep up with the latest Ethereum block

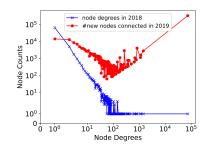

 We instantiate a live graph with NFT transaction network in the Ethereum blockchain

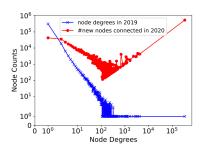

Descriptions	Statistics
Start date (mm-dd-yyyy, UTC)	07-12-2017 13:49
End date (mm-dd-yyyy, UTC)	08-01-2022 06:50
Number of NFT collections	97,667
Number of NFT tokens	77,991,885
Number of account addresses	4,531,020
Number of transactions	124,660,813

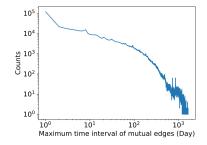

Observations and Analyses

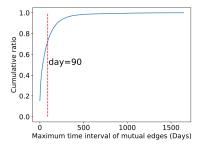
- The NFT transaction network is highly active and growing at a fast speed
- Most of the addresses remain active as the NFT ecosystem becomes mature

(a) Nodes


(b) Edges


(c) Edge percentages


(d) Degree distribution


Observations and Analyses

- It follows preferential attachment growth model
- The reciprocity of the transaction network is relatively low
- It shares similar yet distinct characteristics when compared to traditional networks like social networks, citation networks, etc.

(a) Hub nodes in year 2018 (b) Hub nodes in year 2019 (c) Mutual edges in days

(d) Ratio of mutual edges

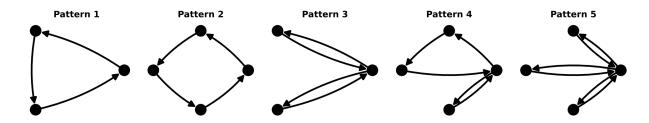
Experiments and Lessons Learnt

Temporal link prediction

- Fixed-split
- Live update
- Three granularities

	Eivad Split						
36 11	Fixed Split						
Models	Snapshot Days		Snapshot Weeks		Snapshot Months		
	AUC	MRR	AUC	MRR	AUC	MRR	
Dyngraph2vec	OOM	OOM	OOM	OOM	OOM	OOM	
TGCN	53.64±1.60	14.24 ± 2.60	61.55±6.24	36.16 ± 6.60	74.87±4.99	45.97 ± 4.46	
EvolveGCN	OOM	OOM	OOM	OOM	OOM	OOM	
GCRN-GRU	95.86 ± 0.03	71.48 ± 0.49	93.14±0.18	68.44 ± 0.05	86.74 ± 0.80	58.23 ± 1.23	
GCRN-LSTM	94.12±0.92	68.51 ± 2.36	92.90±0.43	67.66 ± 0.31	86.44±0.92	58.71 ± 0.84	
DynGEM	OOM	OOM	OOM	OOM	OOM	OOM	
Roland-MA	95.93±0.15	66.34 ± 0.23	93.53±0.13	65.06 ± 0.43	86.23±0.85	54.93 ± 1.42	
Roland-MLP	65.46±6.10	43.76 ± 5.94	73.34±7.87	42.04 ± 16.8	85.88±2.22	57.58 ± 4.12	
Roland-GRU	73.33±11.5	49.45 ± 8.91	91.48±1.67	66.28 ± 1.86	86.59±0.88	59.37 ± 1.54	
	Live Update						
Dyngraph2vec	OOM	OOM	OOM	OOM	OOM	OOM	
TGCN	58.22±5.76	17.77 ± 10.7	59.94±8.44	22.67 ± 19.3	75.01 ± 2.66	43.16 ± 0.75	
EvolveGCN	OOM	OOM	OOM	OOM	OOM	OOM	
GCRN-GRU	80.95±1.92	39.13 ± 0.39	85.34±0.26	46.08 ± 1.43	81.40 ± 0.34	43.68 ± 0.39	
GCRN-LSTM	79.12±2.14	37.83 ± 1.16	84.73±0.34	42.89 ± 3.34	81.24±0.80	41.47 ± 3.00	
DynGEM	OOM	OOM	OOM	OOM	OOM	OOM	
Roland-MA	90.47±0.66	49.79 ± 0.95	88.74±0.37	50.77 ± 1.13	83.93±0.95	47.11 ± 1.16	
Roland-MLP	56.32±8.06	22.16 ± 15.4	70.88±10.5	40.91 ± 10.8	79.38±4.47	46.51 ± 2.61	
Roland-GRU	60.04±5.08	27.29 ± 6.26	75.93±19.2	48.66±13.7	84.36±0.46	50.75±0.83	

Active graph should be modeled by fine-grained time granularity


Experiments and Lessons Learnt

- Temporal node classification
- Patterns may be sparse at finer time granularities, making it challenging to discern meaningful features for classification

Models	Snapshot Days		Snapshot Weeks		Snapshot Months	
Models	Accuracy	Recall	Accuracy	Recall	Accuracy	Recall
Dyngraph2vec	OOM	OOM	OOM	OOM	OOM	OOM
TGCN	18.48 ± 2.66	31.15 ± 3.16	43.97±4.57	32.99 ± 2.34	47.45 ± 3.49	32.53 ± 2.95
EvolveGCN	OOM	OOM	OOM	OOM	OOM	OOM
GCRN-GRU	41.06 ± 3.30	34.75 ± 2.93	46.78 ± 0.72	34.79 ± 0.42	47.42 ± 2.16	28.97 ± 3.22
GCRN-LSTM	46.14±3.29	35.19 ± 3.61	48.04 ± 2.37	31.58 ± 1.75	49.32 ± 2.01	35.39 ± 1.49
DynGEM	OOM	OOM	OOM	OOM	OOM	OOM
Roland-MA	51.02 ± 2.01	28.77 ± 3.23	50.39±0.45	26.33 ± 3.95	47.96 ± 2.69	22.33 ± 3.07
Roland-MLP	48.46 ± 3.18	30.62 ± 3.94	47.59 ± 3.39	31.67 ± 3.62	45.74 ± 4.75	35.04 ± 3.47
Roland-GRU	49.88±2.15	33.38 ± 3.91	46.63±3.07	33.85 ± 1.48	50.04±0.37	32.17 ± 2.72

Experiments and Lessons Learnt

Continuous subgraph matching

Query Patterns		Model Query Time (ms)				
Queries	Counts	SymBi	Graphflow	TurboFlux	RapidFlow	
$\overline{p1}$	19,338	1.22×10^4	1.11×10^4	1.11×10^4	5.93×10^{2}	
<i>p</i> 2	2,243,232	1.19×10^4	1.44×10^4	1.51×10^4	6.13×10^{2}	
р3	3,012,738	1.11×10^4	1.13×10^4	1.08×10^4	5.83×10^{2}	
p4	9,472,960	1.24×10^4	1.43×10^4	6.06×10^4	6.45×10^{2}	
<i>p5</i>	3,154,355,868	1.34×10^{5}	4.24×10^{5}	7.72×10^4	5.84×10^{2}	

Conclusion

 We propose the concept of Live Graph Lab, which includes blockchain based temporal graphs that are openly accessible, fully recorded, and dynamically evolving over time

Future Tasks

- Detecting anomalies activities
- Providing personalized services like recommendation
- Informative decision-making
- ...

THANK YOU