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Motivation

The multi-armed bandit (MAB) problem and its various extensions
have been extensively investigated.

▶ [Bubeck and Cesa-Bianchi, 2012], [Russo et al., 2018],
[Slivkins et al., 2019], [Lattimore and Szepesvári, 2020], ...
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Motivation

Most work typically focus on achieving optimal expected regret.

Well-known common goals:

▶ worst-case expected regret Õ(
√
T )

▶ instance-dependent expected regret Õ(1)

What if we are willing to give up a little bit on regret expectation ...

▶ regret tail P(regret > x) decays faster for large x?
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Motivation: Main Question

What is the (optimal) trade-off between
expectation E[regret] and tail risk P(regret > x)?
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Motivation: Literature

Not much work on understanding the regret distribution of stochastic
bandit policies.

▶ [Audibert et al., 2009], [Salomon and Audibert, 2011]: standard bandit
algorithms generally have undesirable concentration properties around
the instance-dependent mean O(lnT ).

▶ [Ashutosh et al., 2021]: a policy with an O(lnT ) regret can be fragile
to mis-specified risk parameter (e.g., the parameter for subgaussian
noises).

▶ [Fan and Glynn, 2022]: for optimized UCB policies, the probability of
incurring a linear regret is very heavy-tailed: at least Ω(1/T ).
Meanwhile, heavy-tailed risk exists for more general UCB policies.
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Model
Time horizon T ; Number of arms K ; Mean reward θ ∈ [0, 1]K .

In each time t ∈ [T ], a policy π pulls an arm at ∈ [K ] and collects a
reward rt,at = θat + ϵt,at .

▶ ϵt,at is an independent zero-mean σ-subgaussian noise term.

Fixed-time, known T :

πt(T ) : {a1, r1,a1 , · · · , at−1, rt−1,at−1} ∪ {T} 7−→ at .

Pseudo Regret

Rπ
θ (T ) = θ∗ · T −

T∑
t=1

θat . (θ∗ = max
k

θk)
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Model: Core Concepts

1. Regret Expectation. Fix α ∈ [1/2, 1) and β ∈ [0, 1). We differentiate
between two scenarios: worst-case and instance-dependent.

(a) A fixed-time policy π is said to be worst-case α-optimal or simply,
α-optimal, if for any ε > 0, we have

sup
θ

E [Rπ
θ (T )] = o(Tα+ε).

α = 1/2: worst-case optimality

(b) A fixed-time policy π is said to be instance-dependent β-consistent or
simply, β-consistent, if for any underlying true mean vector θ and
any ε > 0, we have

E [Rπ
θ (T )] = o(T β+ε).

β = 0: instance-dependent consistency
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Model: Core Concepts

2. Regret Tail Risk. We differentiate between two scenarios: worst-case
and instance-dependent.

(a) A fixed-time policy π enjoys worst-case light-tailed risk, if there
exists a constant c ∈ (0, 1/2) such that

sup
θ

P (Rπ
θ (T ) > cT ) = O(exp(−poly(T ))).

(b) A fixed-time policy π enjoys instance-dependent light-tailed risk, if
for any underlying true mean vector θ, there exists a constant
c ∈ (0, 1/2) such that

P (Rπ
θ (T ) > cT ) = O(exp(−poly(T ))).
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Main Results: Optimal Trade-off

Optimal regret tail risk for the family of policies that obtain both
Õ(Tα) worst-case and Õ(T β) instance-dependent expected regret
(explicit tail bounds are given in the paper):

− ln supθ P(Rπ
θ (T ) > x)

(worst-case scenario)

Θ̃((x/T 1−α) ∧ T β)

for x = Ω̃(Tα)

− lnP(Rπ
θ (T ) > x)

(instance-dependent scenario)

Θ̃(T β)

for x = Ω̃(T β)

More sub-optimality and inconsistency leaves space for
more light-tailed regret distribution.

D. Simchi-Levi, Z. Zheng, F. Zhu Stochastic Multi-armed Bandits 10 / 14



Main Results: Optimal Trade-off

Optimal regret tail risk for the family of policies that obtain both
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Main Results: Algorithm Design

Successive Elimination with the bonus term

rad(n) = η1
(T/K )α

√
lnT

n︸ ︷︷ ︸
control the worst-case tail

∧ η2

√
T β lnT

n︸ ︷︷ ︸
control the instance-dependent tail

.

Special hyperparameters

▶ η1 = β = 0

rad(n) = η2

√
lnT

n

▶ η2 = +∞, α = 1/2

rad(n) = η1

√
T lnT

n
√
K
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Extensions: Structured Non-stationarity

We also extend our results to models that allow structured
non-stationarity beyond standard stochastic MAB problems:

▶ a common reward baseline among all arms for each time period
[Greenewald et al., 2017, Krishnamurthy et al., 2018,
Kim and Paik, 2019, Simchi-Levi and Wang, 2022]

rt,at = bt + θat + ϵt,at .

We show that a simple modification to our policy design leads to
optimal trade-off similar to those for the stochastic MAB model.
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Concluding Remarks

Optimal trade-off and explicit regret tail bounds for K -armed bandit

Extensions on structured non-stationarity

Unknown T? Heavy-tailed rewards? Thompson sampling?
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Thank You!

A follow-up extended version
https://arxiv.org/abs/2304.04341

Contact: fengzhu@mit.edu
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