

Universal Prompt Tuning for Graph Neural Networks

Taoran Fang¹, Yunchao Zhang¹, Yang Yang^{1*}, Chunping Wang²,Lei Chen²

> ¹Zhejiang University ²Finvolution Group

Prompt tuning has achieved a great success in adapting large language model (LLM).

• e.g. GPT-4, Llama 2, ChatGLM ...

This technique leads the way for adapting pre-trained models in a new direction.

Background

Prompt tuning a pre-trained LLM

• Step 1: Pre-training an LLM using the Masked Language Modeling (MLM).

• Step 2: Reformulating the downstream task by a prompt on the input sentence.

Pre-trained LLM vs Pre-trained GNNs

	LLM	GNNs
Input	[Sentence]	[Graph]
	I went to a movie yesterday.	\mathcal{S}
Pre-training Task	Masked language modeling (MLM)	Link prediction, Attribute masking, Contrastive learning,
Prompt Template	I went to a movie yesterday. I feel <mask>.</mask>	?

How to apply prompt tuning on pre-trained GNNs?

Background

Existing graph prompt tuning methods for GNNs.

• Some pioneering works GPPT^[1] and GraphPrompt^[2] utilize graph prompt tuning by modifying the downstream task to the **link prediction**, which is consistent with the pre-training strategy they use.

[1] Mingchen Sun et al. "GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks."[2] Zemin Liu et al. "GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks."

Background

Limitations

□In practice

- There is no unified pre-training task for GNNs, making it challenging to design general prompting functions.
- Existing methods have limited applicability and are only compatible with models pre-trained by the link prediction.

□In theory

• Existing prompt-based tuning methods for GNN models are designed based on intuition, lacking theoretical guarantees for their effectiveness.

Methodology

Graph prompt tuning

• Step 1: *Template design*. We generate the graph template, which includes learnable components in its adjacency matrix and feature matrix.

$$\mathcal{G}^* \colon (\mathbf{A}^*, \mathbf{X}^*) = \psi_t(\mathcal{G})$$

• Step 2: *Prompt optimization*. We search for the optimal prompt parameters according to the downstream task.

$$\max_{\mathbf{\hat{A}} \in \mathbb{A}, \mathbf{\hat{X}} \in \mathbb{X}, \theta} P_{f, \theta}(y | \mathcal{G}^*)$$

Methodology

Specialized graph prompt tuning

• According to the motivation of prompt tuning, the graph prompt design is close related to the pre-training task involved.

However, there are so many pre-training strategies in the graph field. Can we design a universal graph prompt tuning method for all these strategies?

Methodology

Universal graph prompt tuning

• Graph Prompt Feature (GPF)

GPF focuses on incorporating additional learnable parameters into the feature space of the input graph.

$$p \in \mathbb{R}^{F}$$

The learnable vector p is added to the graph features **X** to generate the prompted features **X**^{*}.

$$\mathbf{X} = \{x_1, x_2, \dots, x_N\} \quad \mathbf{X}^* = \{x_1 + p, x_2 + p, \dots, x_N + p\}$$

• Graph Prompt Feature-Plus (GPF-plus)

GPF-plus sets a different feature vector for each node in the graph.

$$p_1, p_2, \dots p_N \in \mathbb{R}^F$$

 $\mathbf{X} = \{x_1, x_2, \dots, x_N\}$ $\mathbf{X}^* = \{x_1 + p_1, x_2 + p_2, \dots, x_N + p_N\}$

Rethinking the process of graph prompt tuning

• Complex *template design* and *prompt optimization* can be divided into several simple steps.

Rethinking the process of graph prompt tuning

We assume the pre-trained GNN model is a single layer *GIN* with *sum* pooling. $\mathbf{H} = (\mathbf{A} + (1 + \epsilon) \cdot \mathbf{I}) \cdot \mathbf{X} \cdot \mathbf{W}$ $h_{\mathcal{G}} = \sum_{v_i \in \mathcal{V}} h_i$

• Isolated component transformation

• Link transformation

•

Therefore, we can find a GPF $p = p_1 + p_2 + p_3$ that achieves the equivalent effect.

The universal capability of GPF

Theorem 1. Given a pre-trained GNN model f, an input graph \mathcal{G} : (\mathbf{A}, \mathbf{X}), an arbitrary prompting function $\psi_t(\cdot)$, for any prompted graph $\hat{\mathcal{G}}$: ($\hat{\mathbf{A}}, \hat{\mathbf{X}}$) in the candidate space of the graph template $\mathcal{G}^* = \psi_t(\mathcal{G})$, there exists a GPF extra feature vector \hat{p} that satisfies:

$$f(\mathbf{A}, \mathbf{X} + \hat{p}) = f(\mathbf{\hat{A}}, \mathbf{\hat{X}})$$

GPF can achieve equivalent performance to any specialized graph prompting method. This conclusion inspires many future works such as [1].

The effectiveness guarantee of GPF

Theorem 2. For a pre-trained GNN model f, graphs $D = \{(\mathcal{G}_1: (\mathbf{A}_1, \mathbf{X}_1)), \dots, (\mathcal{G}_m: (\mathbf{A}_m, \mathbf{X}_m))\}$ under the non-degeneracy condition, and a linear projection head θ , there exists $\mathcal{Y} = \{y'_1, \dots, y'_m\}$ for $y_1 = y'_1, \dots, y_m = y'_m$ that satisfies:

$$l_{\text{GPF}} = \min_{p,\theta} \sum_{i}^{m} (f(\mathbf{A}_i, \mathbf{X}_i + p) \cdot \theta - y_i)^2 < l_{\text{FT}} = \min_{f,\theta} \sum_{i}^{m} (f(\mathbf{A}_i, \mathbf{X}_i) \cdot \theta - y_i)^2$$

GPF is not weaker than fine-tuning.

$$H = A \cdot X \cdot W$$
Input tuning: prompt tuning. Model tuning: fine-tuning

We are the first to compare the effectiveness of prompt tuning to fine-tuning.

Empirical Analysis

Pre-training Strategy	Tuning Strategy	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	PPI	Avg.		
·	TT	67.55	78.57	65.16	63.34	70.06	81.42	77.71	81.32	71.29	72 93		
Infomax		±2.06	± 0.51	±0.53	±0.45	±1.45	±2.65	±0.45	±1.25	±1.79	12.75		
Intolliux	GPF	66.83	79.09	66.10	66.17	73.56	80.43	76.49	83.60	77.02	74.36		
	011	±0.86	±0.25	±0.53	±0.81	±3.94	± 0.53	±0.18	±1.00	±0.42			
1	GPF-plus	67.17	79.13	66.35	65.62	75.12	81.33	77.73	83.67	77.03	74.79		
	F	±0.36	±0.70	±0.37	±0.74	±2.45	±1.52	±1.14	±1.08	±0.32			
	ET	66.33	78.28	65.34	66.77	74.46							
AttrMasking	ГІ	±0.55	±0.05	±0.30	±0.13	±2.82	Da	ataset	Tuning S	trategy	Tunable	e Parameters	Relative Ratio (%)
Autwasking	GPE	68.09	79.04	66.32	69.13	75.06						1 01 6	100
	UII	±0.38	±0.90	±0.42	±1.16	±1.02			FI		\sim	· 1.8M	100
	GPF-nlus	67.71	78.87	66.58	68.65	76.17	Che	mistry	GP	F 1	\sim	- 0.3K	0.02
i	OII plus	±0.64	±0.31	±0.13	±0.72	± 2.98			GPF-pl		~	3-12K	0.17-0.68
	FT 69.65 ±0.87	69.65	78.29	66.39	64.45	73.71			FТ	.	~	2.7M	100
		±0.87	±0.44	±0.57	±0.6	±1.57	Biology		GPF		$\sim 0.3 { m K}$		0.01
ContextPred	CDE	68.48	79.99	67.92	66.18	74.51			GPF-j	plus	\sim	3-12K	0.11-0.44
	GPF	±0.88	±0.24	±0.35	±0.46	±2.72							
	CDE alua	69.15	80.05	67.58	66.94	75.25 L	04.40	70.40	03.01	//./1	76 15		
	GPF-plus	±0.82	±0.46	±0.54	±0.95	±1.88	±0.78	±0.16	±0.43	±0.21	/0.15		
		69 49	73 35	62.54	60.63	75.17	69 78	78.26	75 51	67 76			
GCL	\mathbf{FT}	± 0.35	± 0.70	± 0.26	± 1.26	+2.14	+1.44	± 0.73	+2.01	± 0.78	70.27		
		71.11	73.64	62.70	61.26	72.06	70.09	75.52	78.55	67.60			
	GPF	± 1.20	± 0.25	± 0.46	± 0.53	± 2.98	± 0.67	± 1.09	± 0.56	± 0.57	70.28		
		72.18	73.35	62.76	62.37	73.90	72.94	77.51	79.61	67.89	-1 -00		
	GPF-plus	±0.93	±0.43	±0.75	±0.38	±2.47	±1.87	±0.82	±2.06	±0.69	71.39		

GPF and GPF-plus achieved better results than fine-tuning in 80% of the experiments.

Comparison with existing graph prompt-based methods

Pre-training Strategy	Tuning Strategy	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	PPI	Avg.
	FT	66.56 ±3.56	78.67 <u>±0.35</u>	66.29 ±0.45	64.35 ±0.78	69.07 ±4.61	79.67 ±1.70	77.44 ±0.58	80.90 ±0.92	71.54 ±0.85	72.72
EdgePred	GPPT	64.13 ±0.14	66.41 ±0.04	60.34 ±0.14	54.86 ±0.25	59.81 ±0.46	63.05 ±0.34	60.54 ±0.54	70.85 ±1.42	56.23 ±0.27	61.80
	GPPT (w/o ol)	69.43 ±0.18	78.91 ±0.15	64.86 ±0.11	60.94 ±0.18	62.15 ±0.69	82.06 ±0.53	73.19 ±0.19	70.31 ±0.99	76.85 ±0.26	70.97
	GraphPrompt	69.29 ±0.19	68.09 ±0.19	60.54 ±0.21	58.71 ±0.13	55.37 ±0.57	62.35 ±0.44	59.3 1 ±0.93	67.70 ±1.26	49.48 ±0.96	61.20
	GPF	69.57 ±0.21	79.74 ±0.03	65.65 ±0.30	67.20 ±0.99	69.49 ±5.17	82.86 ±0.23	77.60 ±1.45	81.57 ±1.08	76.98 ±0.20	74.51
	GPF-plus	69.06 ±0.68	80.04 ±0.06	65.94 ±0.31	67.51 ±0.59	68.80 ±2.58	83.13 ±0.42	77.65 ±1.90	81.75 ±2.09	77.00 ±0.12	74.54

GPF and GPF-plus achieved better results than specialized graph prompt methods by a large margin.

Empirical Analysis

Full-shot (50-shot) experiments

Pre-training Strategy	Tuning Strategy	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	PPI	Avg.
Infomax	FT	53.81	61.42	53.93	50.77	58.6	66.12	65.09	52.64	48.79	56.79
	GPF	±5.55 55.52 ±1.84	±1.19 65.56 ±0.64	±0.39 56.76 ±0.54	±2.27 50.29 ±1.61	± 5.46 62.44 ± 4.11	±0.03 68.00	67.68	±2.04 54.49 ±2.54	±1.52 54.03	59.41
	GPF-plus	58.09 ±2.12	65.71 ±0.37	57.13 ±0.48	51.33 ±1.14	62.96 ±3.27	67.88 ±0.42	66.80 ±1.43	56.56 ±6.81	53.78 ±0.45	60.02
EdgePred	FT	48.88 ±0.68	60.95 ±1.46	55.73 ±0.43	51.30 ±2.21	57.78 ±4.03	66.88 ±0.53	64.22 ±1.57	61.27 ±6.10	47.62 ±1.50	57.18
	GPF	50.53 ±1.35	64.46 ±0.93	57.33 ±0.65	51.35 ±0.76	68.74 ±6.03	68.08 ±0.39	66.22 ±1.90	62.85 ±5.91	52.81 ±0.38	60.26
	GPF-plus	54.49 ±4.60	64.99 ±0.53	57.69 ±0.61	51.30 ±1.18	66.64 ±2.40	68.16 ±0.48	62.05 ±3.39	62.60 ±2.48	53.30 ±0.34	60.13
AttrMasking	FT	51.26 ±2.33	60.28 ±1.73	53.47 ±0.46	50.11 ±1.63	61.51 ±1.45	59.35 ±1.31	67.18 ±1.59	55.62 ±5.04	48.17 ±2.45	56.32
	GPF	54.24 ±0.74	64.24 ±0.40	56.84 ±0.28	50.62 ±0.88	65.34 ±1.93	61.34 ±0.60	67.94 ±0.48	57.31 ±6.71	51.26 ±0.32	58.79
	GPF-plus	58.10 ±1.92	64.39 ±0.30	56.78 ±0.25	50.30 ±0.78	63.34 ±0.85	63.84 ±1.13	68.05 ±0.97	57.29 ±4.46	51.35 ±0.32	59.27

GPF and GPF-plus have a greater advantage over fine-tuning in few-shot scenarios.

Empirical Analysis

Training process analysis

Fully fine-tuning a pre-trained GNN model may lose the model's generalization ability. GPF and GPF-plus can significantly alleviate this issue and maintain superior performance on the test set.

Universal Prompt Tuning for Graph Neural Networks

- ✓ We propose a universal prompt tuning method for graph neural networks, which can be applied to the models pre-trained by any strategy.
- ✓ We provide theoretical guarantees and design principles for graph prompt tuning, offering valuable insights for future investigations in this field.

THANKS | Q&A

More relevant research of our group: <u>http://yangy.org</u>

Contact: <u>fangtr@zju.edu.cn</u>, <u>yangya@zju.edu.cn</u> Github: <u>https://github.com/zjunet/GPF</u>

Group Homepage

Code Repository

