#### Improved Communication Efficiency in Federated Natural Policy Gradient via ADMM-based Gradient Updates

Guangchen Lan, Han Wang, James Anderson, Christopher Brinton, Vaneet Aggarwal

> NeurIPS 2023 Ian44@purdue.edu







### **Reinforcement Learning**



trajectories 
$$au = (s_0, a_0, r_0, s_1, a_1, r_1 \cdots)$$

#### Challenge:

• High volumes of data (trajectories) are required.

#### Conventional approach:

Multi-agent solution: Transmit raw **data** collected locally by different agents to a central serve.

- Communication overhead;
- Long delays;
- Privacy and legal issues.

## **Federated Learning & FedNPG**

Federated Natural Policy Gradient (FedNPG)



Standard Federated Learning Approach:

• Instead of transmitting raw trajectories, model parameters are transmitted in federated learning.

**Challenges** in Standard FedNPG:

 Communication overhead: In NPG methods, the 2nd-order information with size O(d<sup>2</sup>) needs to be transmitted in each iteration. Thus, it is not scalable.

 $\{\mathbf{H}_i \in \mathbb{R}^{d imes d}, \ \mathbf{g}_i \in \mathbb{R}^d\}_{i=1}^N$ 

Q: Can we reduce the communication complexity for 2nd-order FedNPG approach while maintaining performance guarantees?

A: Yes! Use FedNPG-ADMM!

### FedNPG-ADMM

**Alternating Direction Method of Multipliers (ADMM)** 



Table 1: Complexity comparison in each agent.

|                          | NPG                                            | FedNPG                                          | FedNPG-ADMM                                     |
|--------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Sample complexity        | $\mathcal{O}(rac{1}{(1-\gamma)^6\epsilon^2})$ | $\mathcal{O}(rac{1}{(1-\gamma)^6N\epsilon^2})$ | $\mathcal{O}(rac{1}{(1-\gamma)^6N\epsilon^2})$ |
| Communication complexity | -                                              | $\mathcal{O}(rac{d^2}{(1-\gamma)^2\epsilon})$  | $\mathcal{O}(rac{d}{(1-\gamma)^2\epsilon})$    |

#### FedNPG-ADMM



[1] Rajeswaran, A., Lowrey, K., Todorov, E.V., Kakade, S.M.: Towards generalization and simplicity in continuous control. NeurIPS (2017)
[2] Kakade, S.M.: A natural policy gradient. NeurIPS (2001)

 $\langle 4 \rangle$ 

### FedNPG-ADMM

**Algorithm Details** 

#### Algorithm 1 FedNPG-ADMM

**Input:** MDP  $\langle S, A, P, \mathcal{R}, \gamma \rangle$ ; Number of timesteps T; Penalty constant  $\rho$ ; Step size  $\eta$ ; Initial  $\theta_0 \in \mathbb{R}^d, \mathbf{y}^0 \in \mathbb{R}^d, \{\mathbf{y}_i^0 = \mathbf{y}^0\}_{i=1}^N, \{\lambda_i \in \mathbb{R}^d\}_{i=1}^N.$ 1: for  $k = 1, \dots, K$  do  $\triangleright$  Server broadcast 2: Broadcast  $\mathbf{y}^{k-1}$  and  $\theta^{k-1}$  to N agents. 3: 4:  $\triangleright$  Agent update 5: for each agent  $i \in \{N\}$  do in parallel  $\lambda_i \leftarrow \lambda_i + \rho(\mathbf{y}_i^{k-1} - \mathbf{y}^{k-1})$ 6:  $\mathbf{g}_{i}^{k} \leftarrow \frac{1}{|\mathcal{D}_{i}|} \sum_{\tau \in \mathcal{D}_{i}} \sum_{t=0}^{T} \left( \nabla_{\theta^{k-1}} \log \pi_{\theta^{k-1}}(a_{t}|s_{t}) \right) \widehat{A}_{\pi_{\theta^{k-1}}}(s_{t}, a_{t})$ 7:  $\mathbf{y}_i^k \leftarrow (\mathbf{H}_i^k + \rho \mathbf{I})^{-1} (\mathbf{g}_i^k - \lambda_i + \rho \mathbf{y}^{k-1})$ 8: Transmit  $\mathbf{y}_i^k \in \mathbb{R}^d$  and  $\mathbf{g}_i^k \in \mathbb{R}^d$  to the server. 9: end for 10:  $\triangleright$  Server update 11:  $\mathbf{y}^k \leftarrow rac{1}{N} \sum_{i=1}^N \mathbf{y}^k_i \ heta^k \leftarrow heta^{k-1} + \eta \sqrt{rac{2N\delta}{(\sum_{i=1}^N \mathbf{g}^k_i)^ op \mathbf{y}^k}} \cdot \mathbf{y}^k$ 12: 13: 14: end for **Output:**  $\theta^K$ 

#### **Performances wrt #agents**



(c) FedNPG (Hopper-v4)

(d) FedNPG-ADMM (Hopper-v4)

1.0

2.0

#### **Performance Comparison**



(c) Swimmer-v4 Overhead

(d) Humanoid-v4 Overhead

#### **Performances with Agent Selection**



Figure 4: Reward performances of FedNPG-ADMM on the Swimmer-v4 task with agent selection. In each iteration, the server randomly selects 100%, 75%, and 50% of agents for the aggregation.

# Thank You



Elmore Family School of Electrical and Computer Engineering

