Score-Based Generative Models with Lévy Processes

Presenter: Eunbi Yoon

Authors: Eunbi Yoon, Keehun Park, Sungwoong Kim Sungbin Lim

MOTIVATION

Investigating score-based generative models **beyond Gaussian for noise injection** is an open question.

Property	Brownian motion	Isotropic α -stable Lévy process
Heavy-tailed	ג x Slow	convergence o
Continuous path		a-collanse issue X
Density function	Exact	Not exact
Easy theoretical handling Hard theoretical		
		handling

MOTIVATION

Question: Are there any generative models using an alternative noise to overcome the intrinsic limitation of diffusion models?

Challenge

- 1) Common theoretical techniques based on Brownian motion may not be applicable.
- 2) The density function of the Lévy process has not an exact form.

CONTRIBUTION

•We propose a novel Score-based generative model, Lévy-Itô Model (LIM), which utilizes **isotropic** α -stable Lévy processes as noise injection.

•We derive **an exact reverse-time stochastic differential equation** driven by the Lévy process

•We derive a fractional score function to match the drift term of timereversal SDEs and propose fractional Denoising Score Matching.

BACKGROUND

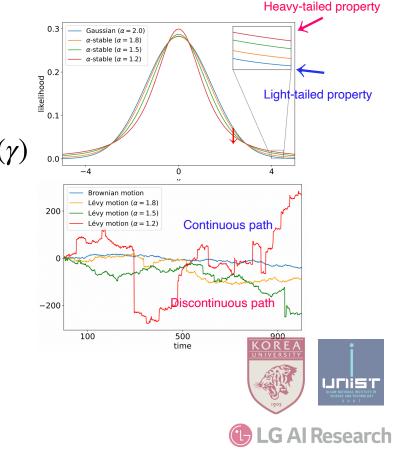
Isotropic α -stable distribution

- $\alpha \in (0,2]$ be a characteristic exponent
- $\gamma \ge 0$ be a scale parameter
- 1-dimensional symmetric α -stable distribution $\mathcal{S}\alpha\mathcal{S}(\gamma)$

1) $X \sim \mathcal{S}\alpha \mathcal{S}(\gamma)$ then $\mathbb{E}[e^{i\langle \mathbf{u}, \mathbf{x} \rangle}] = e^{-\gamma^{\alpha} ||\mathbf{u}||^{\alpha}}$

2) Heavy-tail propoerties $P(X > \mathbf{x}) \sim ||\mathbf{x}||^{-\alpha}$

3) $\alpha = 2$; Gaussian $\alpha = 1$; Cauchy



BACKGROUND

Lévy processes

A stochastic process L_t is called **Lévy process** if

- (i) L_t has independent increments
- (ii) L_t has stationary increments

Minimal requirement for noise

(iii) L_t is stochastically continuous.

If for all s < t, $(L_t - L_s) \stackrel{d}{=} L_{t-s}$ follows $\mathcal{S}\alpha \mathcal{S}^d((t-s)^{1/\alpha})$, where $\stackrel{d}{=}$ means that the two processes have the same law, then the Lévy process

 L_t^{α} is called **isotropic** α -stable Lévy process.

THEORY

Time-reversal SDE driven by isotropic α -stable Lévy process

$$d\overleftarrow{X}_{t} = \left(-\frac{\beta(t)}{\alpha}\overleftarrow{X}_{t+} - \alpha \cdot \beta(t) \cdot \boxed{S_{t}^{(\alpha)}(\overleftarrow{X}_{t+})}\right) d\overline{t} + (\beta(t))^{\frac{1}{\alpha}} d\overline{L}_{t}^{\alpha}$$
Fractional Score function
$$S_{t}^{(\alpha)}(\mathbf{x}) := \frac{\Delta^{\frac{\alpha-2}{2}} \nabla p_{t}(\mathbf{x})}{p_{t}(\mathbf{x})}$$
• $\Delta^{\frac{\beta}{2}}$: Fractional Laplacian of order $\frac{\beta}{2}$ for $\beta \in (-1, 2)$

UNIS

• $d\overline{t}$: Infinitesimal negative timestep

• \bar{L}_t^{α} : Isotropic α -stable Lévy process such that time flows backward NeurIPS 2023 **LG AI Research** 7

THEORY

Variant of Euler-Maruyama with dynamic time increment

$$\mathbf{x}_{t} = \frac{a(t)}{a(s)} \mathbf{x}_{s} + \alpha^{2} \left(\frac{a(t)}{a(s)} - 1\right) S_{s}^{(\alpha)}(\mathbf{x}_{s}) + \left(\left(\frac{a(t)}{a(s)}\right)^{\alpha} - 1\right)^{\frac{1}{\alpha}} \epsilon^{\alpha}$$

$$a(t) = \exp\left(-\int_{0}^{t} \frac{\beta(s)}{\alpha} ds\right), \quad \epsilon \sim \delta \alpha \delta^{d}(1)$$
Proof
$$d\overleftarrow{X}_{t} = \left(-\frac{\beta(t)}{\alpha} \overleftarrow{X}_{t+} - \alpha \cdot \beta(t) \cdot S_{t}^{(\alpha)}(\overleftarrow{X}_{t+})\right) d\overline{t} + (\beta(t))^{\frac{1}{\alpha}} d\overline{L}_{t}^{\alpha}$$
Using Semi-linear structure \rightarrow Applying Itô-formula

NeurIPS 2023

(LG Al Research

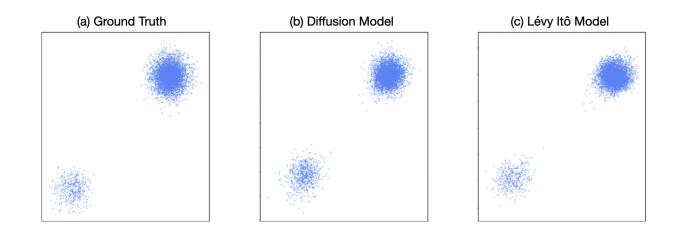
THEORY

Fractional Score Matching

NeurIPS 2023

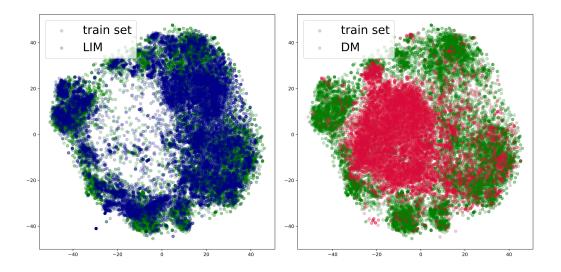
(LG Al Research

Good Mode estimation: Two mixture of Gaussian



Metric	Diffusion model	LIM
$\overline{\text{FID}}(\downarrow)$	8.312 ± 0.904	$\textbf{0.663} \pm \textbf{0.376}$
MMD (†)	0.025 ± 0.003	$\textbf{0.02} \pm \textbf{0.002}$

Good Mode estimation: Imbalanced CIFAR 10



Metric	LIM	DM
FID↓	21.07	62.62
Recall↑	0.5549	0.5002
MMD↓	0.00416	0.01396

Diverse sample generation

Recall (†)	CIFAR10	CelebA	ImageNet
Diffusion model	0.6860	0.6437	0.6932
LIM	0.6960	0.7007	0.6937

origin image

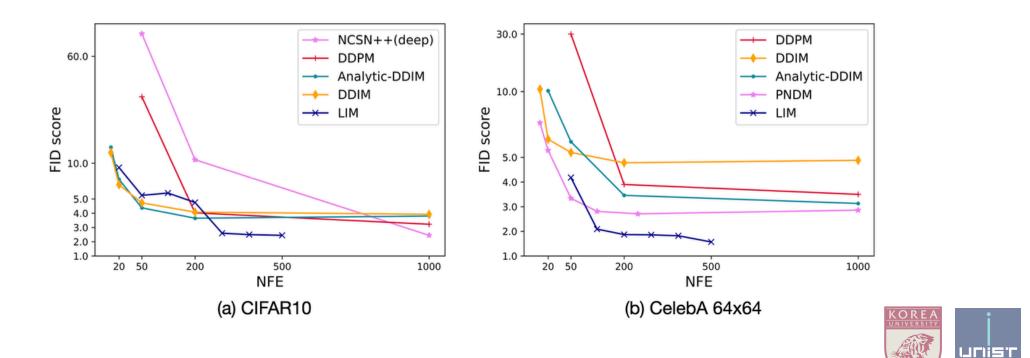
masked image

NeurIPS 2023

imputation result

(LG AI Research

Fast Convergence rate



NeurIPS 2023

ULG AI Research

Comparable sample quality

$FID(\downarrow)$	CIFAR10	CelebA	ImageNet
Diffusion model	2.44	2.23	14.23
LIM	2.44	1.57	12.97

