

Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition

Divin Yan, Gengchen Wei, Chen Yang, Shengzhong Zhang, Zengfeng Huang Fudan University

Imbalanced Node Classification

- Learning on graphs commonly struggles with class imbalance issues.
- Due to topological asymmetries[1,2,3] impact model performance, conventional methods have been proved ineffective.
- Thus, a more fundamental and theoretical perspective is urgently needed.

1. Topology-Imbalance Learning for Semi-Supervised Node Classification. NeurIPS 2021

2. GraphENS: Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification. ICLR 2022

3. TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification. ICML 2022

Graph Imbalance and Model Variance

As the ratio of imbalance increases, the minority class exhibits a smaller sample size n_i , which consequently makes a greater contribution to the overall variance. **Theorem 1** Under the condition that $\sum_i n_i$ is a constant, the variance $\sum_{i=1}^c \mathbb{E}_x \left[\frac{1}{n_i} h^T(x) \Lambda^i h(x) \right]$ reach its minimum when all n_i equal.

Estimate the Expectation with Labeled Nodes: aswe lack access to other training sets. Therefore, we propose Lemma 1 to estimate the variance on training set with the variance on labeled data.

> Lemma 1 Under the above assumption for $h^i \sim N(\mu^i, \Lambda^i)$, $C^i \sim N\left(\mu^i, \frac{1}{n_i}\Lambda^i\right)$, minimizing the $\sum_{i=1}^c \mathbb{E}_x \left[\operatorname{Var}(x) \right]$ is equivalent to minimizing Equation 3: $\frac{1}{N} \sum_{x \in G} \sum_{i=1}^c \left(h(x)^T \frac{1}{\sqrt{2n_i}} \left(h_1^i - h_2^i \right) \right)^2 = \frac{1}{N} \sum_{k=1}^{n_j} \sum_{j=1}^c \sum_{i=1}^c \left((\mu_k^j + \epsilon_k^j)^T \frac{1}{\sqrt{2n_i}} \left(\epsilon_1^i - \epsilon_2^i \right) \right)^2$. (3)

Estimate the Expectation with Labeled Nodes: aswe lack access to other training sets. Therefore, we propose Lemma 1 to estimate the variance on training set with the variance on labeled data.

> Lemma 1 Under the above assumption for $h^i \sim N(\mu^i, \Lambda^i)$, $C^i \sim N\left(\mu^i, \frac{1}{n_i}\Lambda^i\right)$, minimizing the $\sum_{i=1}^c \mathbb{E}_x \left[\operatorname{Var}(x) \right]$ is equivalent to minimizing Equation 3: $\frac{1}{N} \sum_{x \in G} \sum_{i=1}^c \left(h(x)^T \frac{1}{\sqrt{2n_i}} \left(h_1^i - h_2^i \right) \right)^2 = \frac{1}{N} \sum_{k=1}^{n_j} \sum_{j=1}^c \sum_{i=1}^c \left((\mu_k^j + \epsilon_k^j)^T \frac{1}{\sqrt{2n_i}} \left(\epsilon_1^i - \epsilon_2^i \right) \right)^2$. (3)

Difficulties: Equation 3 required access to embedding pairs from the same class, which were difficult to obtain due to the lack of labels.

Estimate the Expectation with Unlabeled Nodes: To address this, we developed a two-step solution. The first step involved using graph augmentation to create pseudo embedding pairs (h_1, h_2) .

Lemma 1 Under the above assumption for
$$h^i \sim N(\mu^i, \Lambda^i)$$
, $C^i \sim N\left(\mu^i, \frac{1}{n_i}\Lambda^i\right)$, minimizing the $\sum_{i=1}^c \mathbb{E}_x \left[\operatorname{Var}(x) \right]$ is equivalent to minimizing Equation 3:

$$\frac{1}{N} \sum_{x \in G} \sum_{i=1}^c \left(h(x)^T \frac{1}{\sqrt{2n_i}} \left(h_1^i - h_2^i \right) \right)^2 = \frac{1}{N} \sum_{k=1}^{n_j} \sum_{j=1}^c \sum_{i=1}^c \left((\mu_k^j + \epsilon_k^j)^T \frac{1}{\sqrt{2n_i}} \left(\epsilon_1^i - \epsilon_2^i \right) \right)^2. \quad (3)$$

Estimate the Expectation with Unlabeled Nodes: To address this, we developed a two-step solution. The first step involved using graph augmentation to create pseudo embedding pairs (h_1, h_2) .

Lemma 1 Under the above assumption for
$$h^i \sim N(\mu^i, \Lambda^i)$$
, $C^i \sim N\left(\mu^i, \frac{1}{n_i}\Lambda^i\right)$, minimizing the $\sum_{i=1}^c \mathbb{E}_x \left[\operatorname{Var}(x) \right]$ is equivalent to minimizing Equation 3:

$$\frac{1}{N} \sum_{x \in G} \sum_{i=1}^c \left(h(x)^T \frac{1}{\sqrt{2n_i}} \left(h_1^i - h_2^i \right) \right)^2 = \frac{1}{N} \sum_{k=1}^{n_j} \sum_{j=1}^c \sum_{i=1}^c \left((\mu_k^j + \epsilon_k^j)^T \frac{1}{\sqrt{2n_i}} \left(\epsilon_1^i - \epsilon_2^i \right) \right)^2. \quad (3)$$

Difficulties: These pseudo node pairs was their lack of information about class label, preventing us from assigning the correct coefficients in Equation 3, which are vital for compensating minority classes.

The Second Step: To overcome this, in our second step, we introduced the use of class centers , denoted as C^i to replace h in the equation.

$$\frac{1}{N} \sum_{x \in G} \sum_{i=1}^{c} \left((C^{i})^{T} h(x) - (C^{i'})^{T} h'(x) \right)^{2} \\
= \frac{1}{N} \sum_{k=1}^{n_{j}} \sum_{j=1}^{c} \sum_{i=1}^{c} \left((\mu^{i})^{T} (\epsilon_{k}^{j} - \epsilon_{k}^{j'}) + (e^{i})^{T} \epsilon_{k}^{j} - (e^{i'})^{T} \epsilon_{k}^{j'} \right)^{2}$$
(4)

The Final Algorithm: Revar

$$\mathcal{L}_{\rm VR} = \frac{1}{|V_{\rm conf}|} \sum_{i \in V_{\rm conf}} CE\left(\tilde{\pi}'_{i}, \tilde{\pi}_{i}\right) + \frac{1}{|V_{L}|} \sum_{i \in V_{L}} CE\left(y_{i}, \tilde{\pi}_{i}\right)$$
(7)
$$\mathcal{L}_{\rm IR} = -\frac{1}{|V_{U}|} \sum_{\mathbf{h}_{i}, \mathbf{h}'_{i} \in V_{U}} \sin\left(\mathbf{h}_{i} \cdot \mathbf{h}'_{i}\right) - \frac{1}{N_{all}} \left(\sum_{l=1}^{k} \sum_{\mathbf{h}_{i}, \mathbf{h}'_{j} \in \mathbf{C}_{l}} \sin\left(\mathbf{h}_{i} \cdot \mathbf{h}'_{j}\right) + \sum_{l=1}^{k} \sum_{\mathbf{h}_{i}, \mathbf{h}_{j} \in \mathbf{C}_{l}} \sin\left(\mathbf{h}_{i} \cdot \mathbf{h}_{j}\right)\right)$$
(8)
$$\mathcal{L}_{\rm composite} = \lambda_{1} \mathcal{L}_{\rm VR} + \lambda_{2} \mathcal{L}_{\rm IR} + \mathcal{L}_{\rm sup}$$
(9)

Performance of Revar

In all cases, ReVar achieves a decisive advantage that underscores its efficacy in addressing the challenge of class imbalance in node classification.

GCN	Dataset	CiteSee	er-Semi	PubMed-Semi		Comput	ers-Semi
	Imbalance Ratio ($\rho = 10$)	bAcc.	F1	bAcc.	F1	bAcc.	F1
	Vanilla	38.72 ± 1.88	28.74 ± 3.21	65.64 ± 1.72	56.97 ± 3.17	80.01 ± 0.71	71.56 ± 0.81
	Re-Weight	44.69 ± 1.78	38.61 ± 2.37	69.06 ± 1.84	64.08 ± 2.97	80.93 ± 1.30	73.99 ± 2.20
	PC Softmax	50.18 ± 0.55	46.14 ± 0.14	72.46 ± 0.80	70.27 ± 0.94	81.54 ± 0.76	73.30 ± 0.51
	GraphSMOTE	44.87 ± 1.12	39.20 ± 1.62	67.91 ± 0.64	62.68 ± 1.92	79.48 ± 0.47	72.63 ± 0.76
	BalancedSoftmax	55.52 ± 0.97	53.74 ± 1.42	73.73 ± 0.89	71.53 ± 1.06	81.46 ± 0.74	$\textbf{74.31} \pm 0.51$
	+ TAM	56.73 ± 0.71	56.15 ± 0.78	74.62 ± 0.97	72.25 ± 1.30	82.36 ± 0.67	72.94 ± 1.43
	Renode	43.47 ± 2.22	$3\overline{7}.\overline{52} \pm 3.10$	71.40 ± 1.42	67.27 ± 2.96	$\overline{81.89} \pm 0.77$	$\overline{73.13} \pm \overline{1.60}$
	+ TAM	46.20 ± 1.17	39.96 ± 2.76	72.63 ± 2.03	68.28 ± 3.30	80.36 ± 1.19	72.51 ± 0.68
	GraphENS	56.57 ± 0.98	55.29 ± 1.33	72.13 ± 1.04	70.72 ± 1.07	$\textbf{82.40} \pm 0.39$	74.26 ± 1.05
	+ TAM	$\textbf{58.01} \pm 0.68$	56.32 ± 1.03	74.14 ± 1.42	72.42 ± 1.39	81.02 ± 0.99	70.78 ± 1.72
	ReVar	$\textbf{65.28} \pm 0.51$	$\textbf{64.91} \pm 0.51$	$\textbf{79.20} \pm 0.72$	$\textbf{78.45} \pm 0.46$	$\textbf{84.67} \pm 0.17$	$\textbf{80.25} \pm 0.87$
	Δ	+ 7.27(12.53%)	+ 8.59(15.25%)	+ 5.06 (6.82%)	+ 6.03(8.33%)	+ 2.27(2.75%)	+ 5.94 (7.99%)
	Vanilla	38.84 ± 1.13	31.25 ± 1.64	64.60 ± 1.64	55.24 ± 2.80	79.04 ± 1.60	70.00 ± 2.50
	Re-Weight	45.47 ± 2.35	40.60 ± 2.98	68.10 ± 2.85	$63.76 \pm \scriptstyle 3.54$	80.38 ± 0.66	69.99 ± 0.76
	PC Softmax	50.78 ± 1.66	48.56 ± 2.08	72.88 ± 0.83	71.09 ± 0.89	79.43 ± 0.94	71.33 ± 0.86
<u>_</u>	GraphSMOTE	45.68 ± 0.93	38.96 ± 0.97	67.43 ± 1.23	61.97 ± 2.54	79.38 ± 1.97	69.76 ± 2.31
GA	BalancedSoftmax	54.78 ± 1.25	51.83 ± 2.11	72.30 ± 1.20	69.30 ± 1.79	$\textbf{82.02} \pm 1.19$	72.94 ± 1.54
	+ TAM	56.30 ± 1.25	53.87 ± 1.14	73.50 ± 1.24	71.36 ± 1.99	75.54 ± 2.09	66.69 ± 1.44
	Renode	44.48 ± 2.06	37.93 ± 2.87	$\overline{69.93} \pm 2.10$	65.27 ± 2.90	76.01 ± 1.08	66.72 ± 1.42
	+ TAM	45.12 ± 1.41	39.29 ± 1.79	70.66 ± 2.13	66.94 ± 3.54	74.30 ± 1.13	66.13 ± 1.75
	GraphENS	51.45 ± 1.28	$\overline{47.98} \pm 2.08$	73.15 ± 1.24	71.90 ± 1.03	81.23 ± 0.74	$7\bar{1.23} \pm 0.42$
	+ TAM	56.15 ± 1.13	54.31 ± 1.68	73.45 ± 1.07	72.10 ± 0.36	81.07 ± 1.03	71.27 ± 1.98
	ReVar	$\textbf{66.04} \pm 0.66$	$\textbf{65.70} \pm 0.69$	$\textbf{77.85} \pm 0.76$	$\textbf{77.08} \pm 0.69$	$\pmb{86.37} \pm 0.02$	$\textbf{82.35} \pm 0.02$
	Δ	+ 9.89(17.61%)	+ 11.39(20.97%)	+ 4.40(5.99%)	+ 4.98(6.91%)	+ 4.35(5.30%)	+ 9.41(12.90%)
	Vanilla	43.18 ± 0.52	36.66 ± 1.25	68.68 ± 1.51	$64.16 \pm \textbf{2.38}$	72.36 ± 2.39	64.32 ± 2.21
	Re-Weight	46.17 ± 1.32	40.13 ± 1.68	69.89 ± 1.60	65.71 ± 2.31	76.08 ± 1.14	65.76 ± 1.40
SAGE	PC Softmax	50.66 ± 0.99	47.48 ± 1.66	71.49 ± 0.94	70.23 ± 0.67	74.63 ± 3.01	66.44 ± 4.04
	GraphSMOTE	$42.73 \pm \textbf{2.87}$	35.18 ± 1.75	66.63 ± 0.65	$61.97 \pm \textbf{2.54}$	71.85 ± 0.98	68.92 ± 0.73
	BalancedSoftmax	51.74 ± 2.32	49.01 ± 3.16	71.36 ± 1.37	69.66 ± 1.81	73.67 ± 1.11	65.23 ± 2.44
	+ TAM	$51.93 \pm \textbf{2.19}$	48.67 ± 3.25	72.28 ± 1.47	71.02 ± 1.31	77.00 ± 2.93	70.85 ± 2.28
	Renode	48.65 ± 1.37	$4\overline{4}.\overline{25} \pm 2.20$	71.37 ± 1.33	67.78 ± 1.38	77.37 ± 0.74	$\overline{68.42} \pm \overline{1.81}$
	+ TAM	48.39 ± 1.76	$43.56 \pm \scriptscriptstyle 2.31$	71.25 ± 1.07	68.69 ± 0.98	74.87 ± 2.25	66.87 ± 2.52
	GraphENS	53.51 ± 0.78	$5\overline{1}.\overline{42} \pm 1.19$	70.97 ± 0.78	70.00 ± 1.22	82.57 ± 0.50	71.95 ± 0.51
	+ TAM	$\textbf{54.69} \pm 1.12$	$\textbf{53.56} \pm 1.86$	73.61 ± 1.35	$\textbf{72.50} \pm 1.58$	82.17 ± 0.93	$\textbf{72.46} \pm 1.00$
	ReVar	$\textbf{60.48} \pm 0.88$	$\textbf{57.99} \pm 1.54$	$\textbf{77.72} \pm 1.06$	$\textbf{76.01} \pm 1.20$	$\textbf{83.50} \pm 0.02$	$\textbf{76.48} \pm 0.05$
	Δ	+ 5.79(10.59%)	+ 4.53(8.46%)	+ 4.11(5.58%)	+ 3.51(4.84%)	+ 0.93(1.13%)	+ 4.02(5.55%)

Performance of Revar

We also conduct further analysis to verify the superiority of Revar.

Dataset(CS-Random)	GCN		GAT		SAGE	
Imbalance Ratio $(\rho = 41.00)$	bAcc.	F1	bAcc.	F1	bAcc.	F1
Vanilla	84.85 ± 0.16	87.12 ± 0.14	$82.47{\scriptstyle~\pm 0.36}$	84.21 ± 0.31	83.76 ± 0.27	86.22 ± 0.19
Re-Weight	87.42 ± 0.17	88.70 ± 0.10	83.55 ± 0.39	84.73 ± 0.32	85.76 ± 0.24	87.32 ± 0.16
PC Softmax	$\textbf{88.36} \pm 0.12$	88.94 ± 0.04	85.22 ± 0.31	85.54 ± 0.33	87.18 ± 0.14	88.00 ± 0.19
GraphSMOTE	85.76 ± 1.73	87.31 ± 1.32	84.65 ± 1.32	85.63 ± 1.01	85.76 ± 1.98	87.34 ± 0.98
BalancedSoftmax	87.72 ± 0.07	88.67 ± 0.07	84.38 ± 0.20	84.53 ± 0.41	86.78 ± 0.10	88.05 ± 0.09
+ TAM	88.22 ± 0.11	89.22 ± 0.08	85.48 ± 0.24	85.77 ± 0.50	87.83 ± 0.13	88.77 ± 0.07
Renode	87.53 ± 0.11	$\overline{88.91} \pm 0.06$	85.98 ± 0.19	$\overline{86.97} \pm 0.09$	86.13 ± 0.10	$\overline{87.89} \pm 0.09$
+ TAM	87.55 ± 0.06	89.03 ± 0.05	$\pmb{86.61} \pm 0.30$	$\textbf{87.42} \pm 0.24$	85.21 ± 0.33	87.01 ± 0.31
GraphENS	85.97 ± 0.29	$\mathbf{\overline{86.68}} \pm 0.20$	85.86 ± 0.19	86.51 ± 0.32	85.39 ± 0.26	$\overline{\textbf{86.41}} \pm 0.24$
+ TAM	86.34 ± 0.12	87.36 ± 0.08	86.29 ± 0.20	87.28 ± 0.13	85.99 ± 0.13	87.25 ± 0.07
ReVar	$\textbf{88.44} \pm 0.16$	$\textbf{89.54} \pm 0.11$	$\textbf{87.33} \pm 0.04$	$\textbf{88.33} \pm 0.06$	$\textbf{90.11} \pm 0.11$	$\textbf{91.18} \pm 0.11$
Δ	+ 0.08(0.09%)	+ 0.32(0.36%)	+ 0.72(0.83%)	+ 0.91(1.04%)	+ 2.28(2.60%)	+ 2.41(2.71%)

Thanks