

Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment

Yutong Xia, Yuxuan Liang, Haomin Wen, Xu Liu, Kun Wang, Zhengyang Zhou, Roger Zimmermann

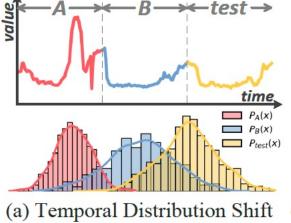
Background

• **Spatio-Temporal Graph (STG)** represents the spatial and temporal relationships between nodes or entities, which is widely used in various fields (e.g., transportation, environment and epidemiology)

• **STG forecasting** has become crucial in the context of smart cities (e.g. informed decision-making, sustainable environments)

Challenges

 $P_A(x) \neq P_B(x) \neq P_{test}(x)$

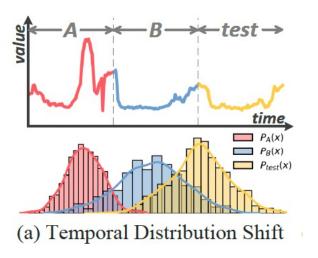


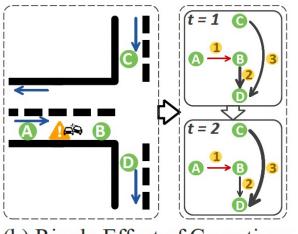
Challenges

• Temporal Distribution Shift

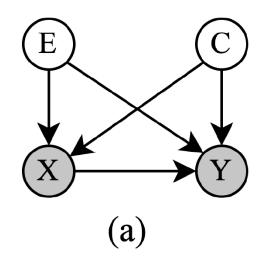
 $P_A(x) \neq P_B(x) \neq P_{test}(x)$

- Dynamic Spatial Causation
 - Existing work:
 - Distance-based adjacency matrices
 - Attention mechanism
 - However, the ripple effect of causations



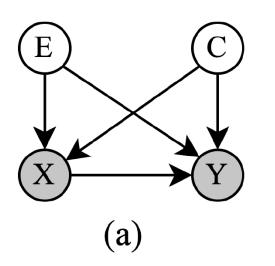


(b) Ripple Effect of Causations

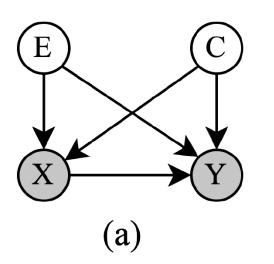




- $X \leftarrow E \rightarrow Y$
- $X \leftarrow C \rightarrow Y$
- $X \rightarrow Y$



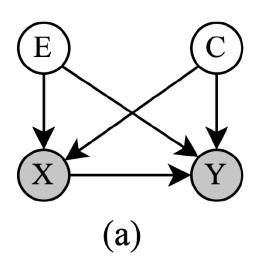
- X ← E → Y The temporal OoD can arise due to changes in external variables over time. (e.g., weather can affect traffic flow observations)
- $X \leftarrow C \rightarrow Y$
- $X \rightarrow Y$



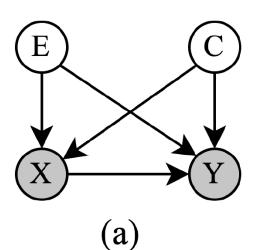
E: temporal environment C: spatial context X: historical signal Y: future signal

- X ← E → Y The temporal OoD can arise due to changes in external variables over time. (e.g., weather can affect traffic flow observations)
- $X \leftarrow C \rightarrow Y$ X and Y are intrinsically affected by the surrounding spatial context, comprising both spurious and genuine causal components.
- $\cdot \quad \mathbf{X} \rightarrow \mathbf{Y}$

July 7, 2023

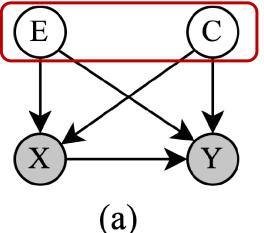


- X ← E → Y The temporal OoD can arise due to changes in external variables over time. (e.g., weather can affect traffic flow observations)
- $X \leftarrow C \rightarrow Y$ X and Y are intrinsically affected by the surrounding spatial context, comprising both spurious and genuine causal components.
- $X \rightarrow Y$ Our primary goal.



- Backdoor $X \leftarrow E \rightarrow Y$ The temporal OoD can arise due to changes in external variables over time. (e.g., weather can affect traffic flow observations)
 - paths . $X \leftarrow C \rightarrow Y$ X and Y are intrinsically affected by the surrounding spatial context, comprising both spurious and genuine causal components.
 - $X \rightarrow Y$ Our primary goal. •

Confounding factors

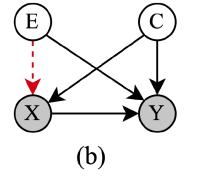


- Backdoor $X \leftarrow E \rightarrow Y$ The temporal OoD can arise due to changes in external variables over time. (e.g., weather can affect traffic flow observations)
 - paths . $X \leftarrow C \rightarrow Y$ X and Y are intrinsically affected by the surrounding spatial context, comprising both spurious and genuine causal components.
 - $X \rightarrow Y$ Our primary goal.

Causal Treatments

• Back-door adjustment for E

$$P(Y|do(X)) = \sum_{e} P(Y|do(X), E = e)P(E = e|do(X))$$
$$= \sum_{e} P(Y|do(X), E = e)P(E = e)$$
$$= \sum_{e} P(Y|X, E = e)P(E = e)$$



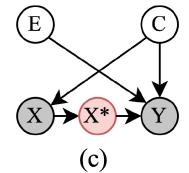
Causal Treatments

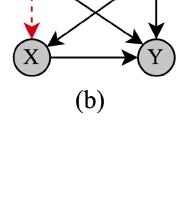
• Back-door adjustment for E

$$\begin{split} P(Y|do(X)) &= \sum_{e} P(Y|do(X), E = e) P(E = e|do(X)) \\ &= \sum_{e} P(Y|do(X), E = e) P(E = e) \\ &= \sum_{e} P(Y|X, E = e) P(E = e) \end{split}$$

• Front-door adjustment for C

$$\begin{split} P(Y|do(X)) &= \sum_{x^*} P(Y|do(X^* = x^*)) P(X^* = x^*|do(X)) \\ &= \sum_{x^*} \sum_{x'} P(Y|X^* = x^*, X = x') P(X = x') P(X^* = x^*|do(X)) \\ &= \sum_{x^*} \sum_{x'} P(X^* = x^*|X) P(Y|X^* = x^*, X = x') P(X = x') \end{split}$$

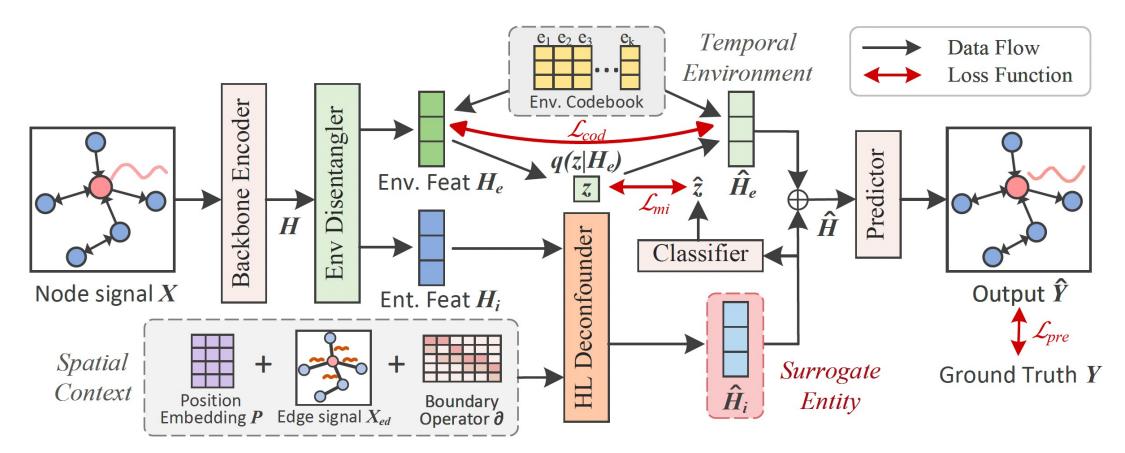




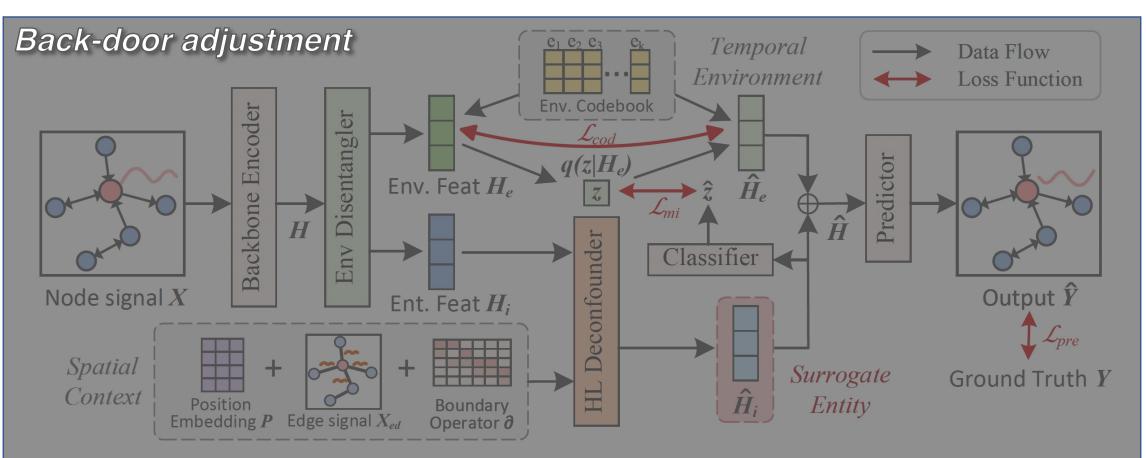
С

E

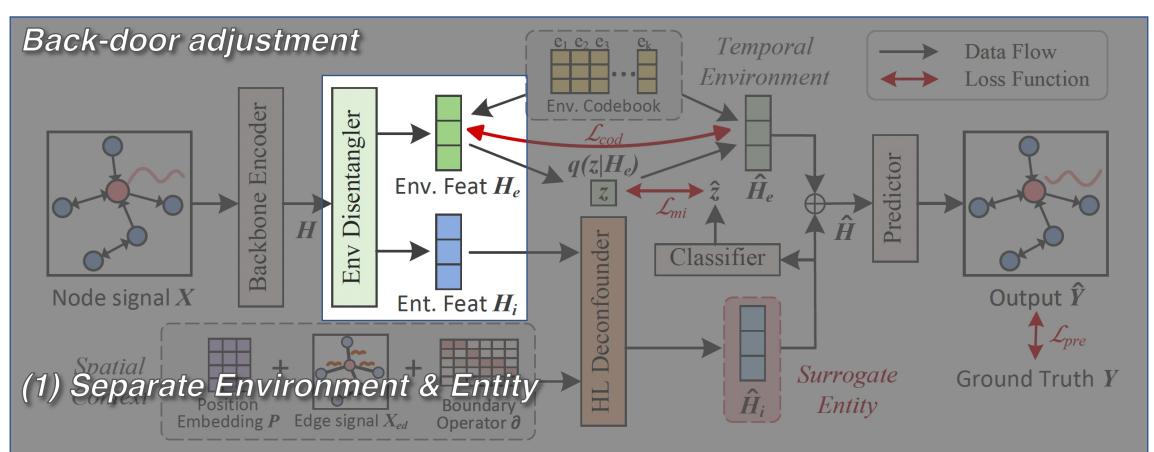
Causal Spatio-Temporal neural network (CaST)



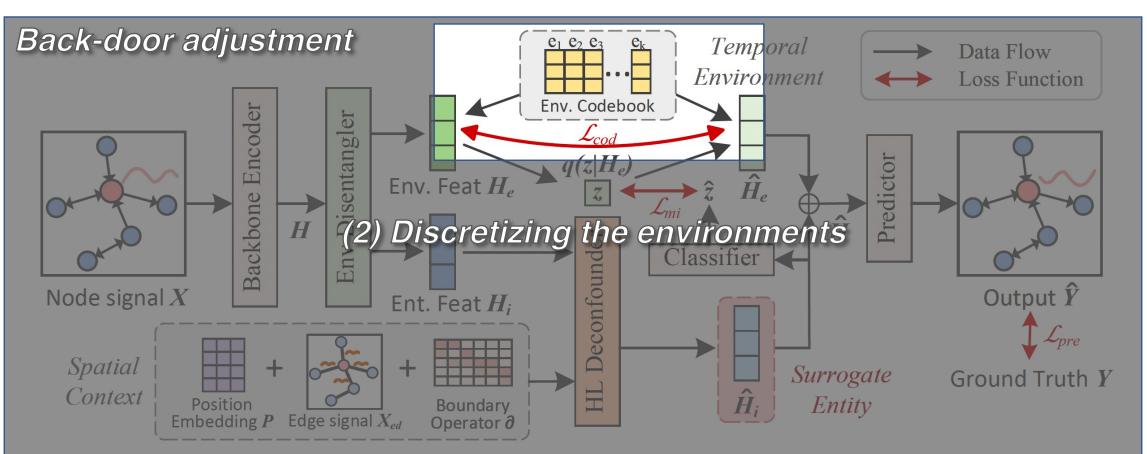
Causal Spatio-Temporal neural network (CaST)



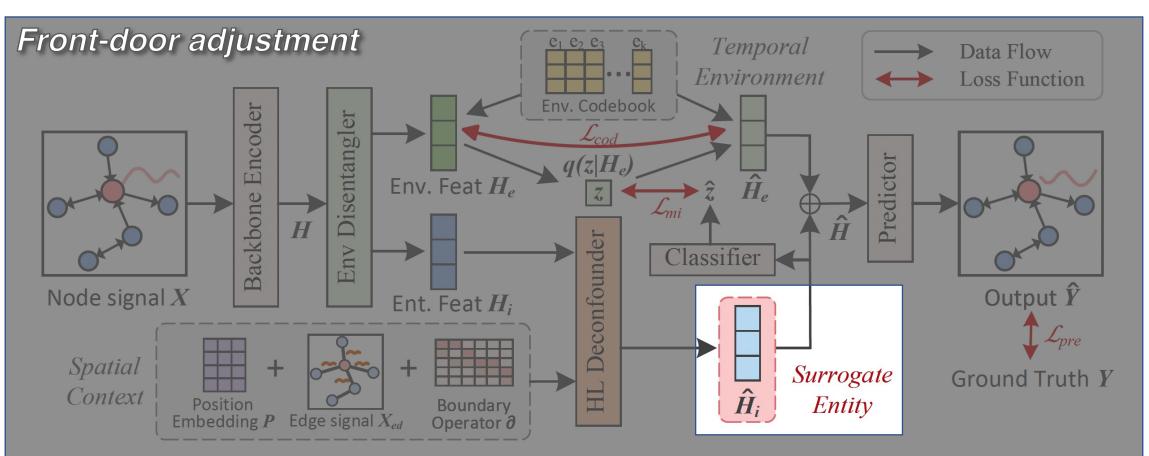
Causal Spatio-Temporal neural network (CaST)



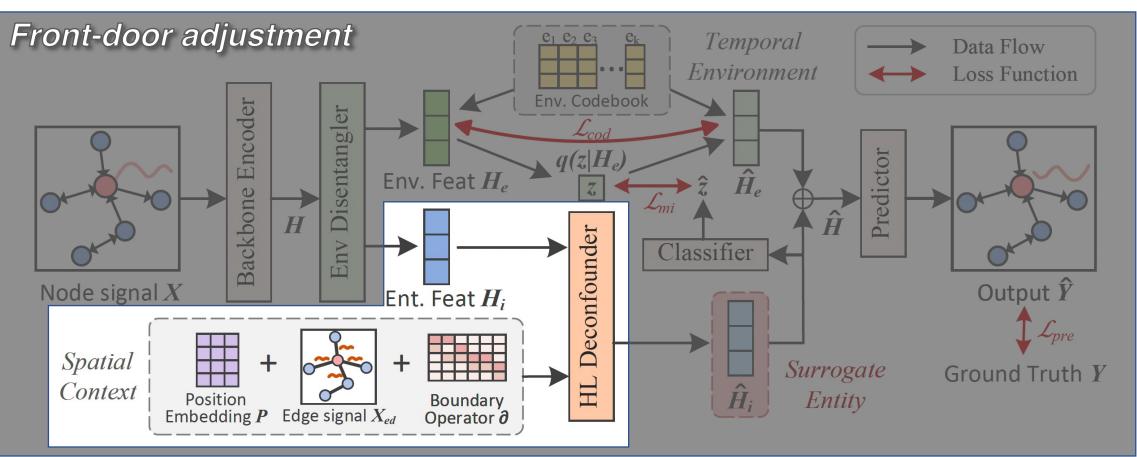
Causal Spatio-Temporal neural network (CaST)



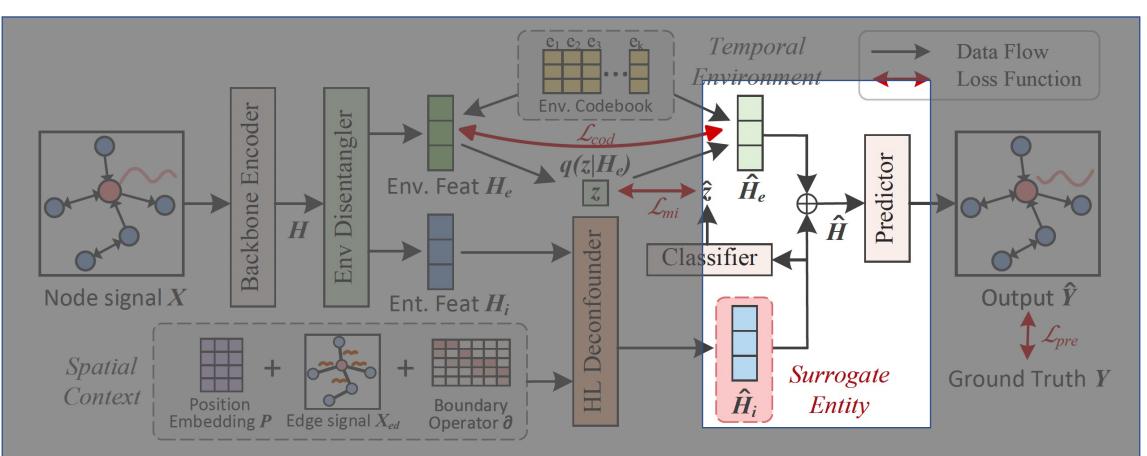
Causal Spatio-Temporal neural network (CaST)



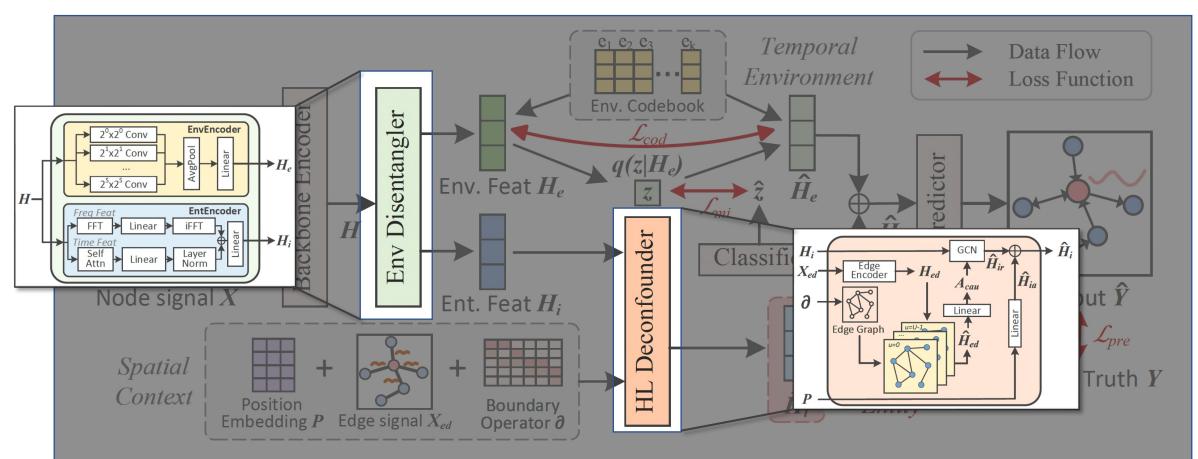
Causal Spatio-Temporal neural network (CaST)



Causal Spatio-Temporal neural network (CaST)



Causal Spatio-Temporal neural network (CaST)



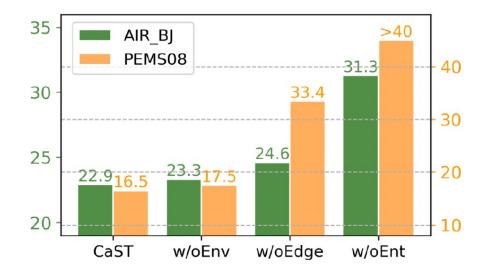
Experiments

- Datasets: PEMS08, AIR-BJ, AIR-GZ
- Experiment settings: predict over the next 24 steps given the past 24 steps
- Evaluation metrics: MAE, RMSE

Table 1: 5-run error comparison. The bold/underlined font means the best/the second-best result.

Model	PEMS08 (24→24)		AIR-BJ (24→24)		AIR-GZ $(24 \rightarrow 24)$	
	MAE	RMSE	MAE	RMSE	MAE	RMSE
HA(2017)	58.83	81.96	32.12	43.95	19.56	25.77
VAR(1991)	37.04	53.08	29.79	42.04	14.97	20.61
DCRNN(2017)	22.10 ± 0.45	33.96 ± 0.59	23.72 ± 0.36	35.84 ± 0.56	12.99 ± 0.26	18.27 ± 0.41
STGCN(2018)	18.60 ± 0.08	28.44 ± 0.15	23.71 ± 0.21	36.30 ± 0.58	12.69 ± 0.04	17.66 ± 0.09
ASTGCN(2019)	20.36 ± 0.48	30.87 ± 0.55	23.78 ± 0.22	35.91 ± 0.11	12.91 ± 0.15	18.02 ± 0.27
MTGNN(2020)	18.13 ± 0.10	28.85 ± 0.12	24.35 ± 0.74	38.97 ± 1.81	12.43 ± 0.11	17.99 ± 0.18
AGCRN(2020)	17.06 ± 0.14	26.80 ± 0.15	23.43 ± 0.29	35.66 ± 0.57	$\overline{12.74} \pm 0.01$	17.49 ± 0.01
GMSDR(2022)	18.34 ± 0.68	28.36 ± 1.01	$\overline{25.92} \pm 0.52$	$\overline{39.60} \pm 0.44$	13.47 ± 0.31	19.04 ± 0.46
STGNCDE(2022)	17.55 ± 0.30	27.28 ± 0.36	24.35 ± 0.31	35.91 ± 0.48	13.70 ± 0.10	19.15 ± 0.07
CaST (ours)	16.44 ± 0.10	26.61 ± 0.15	22.90 ± 0.09	34.84 ± 0.11	12.36 ± 0.01	17.25 ± 0.05

- Effects of Core Components
 - w/o Env: excludes <u>environment features</u> for prediction.
 - w/o Ent: omits <u>entity features</u> for prediction.
 - w/o Edge: not utilize the <u>causal score</u> to guide the spatial message passing



- Effects of Edge Convolution
 - CaST-ADP: using a self-adaptive adjacency matrix
 - CaST-GAT: using the graph attention mechanism for causal scoring

Variant	Overall	1-8 s	9-16s	17-24s
CaST-ADP	24.28	16.42	26.06	30.36
CaST-GAT	23.77	14.76	25.75	30.80
CaST	22.90	13.79	24.86	30.05

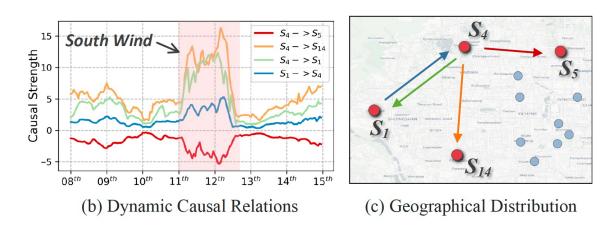
Table 2: Variant results on MAE over AIR-BJ. s: steps.

- Effects of Edge Convolution
 - CaST-ADP: using a self-adaptive adjacency matrix
 - CaST-GAT: using the graph attention mechanism for causal scoring

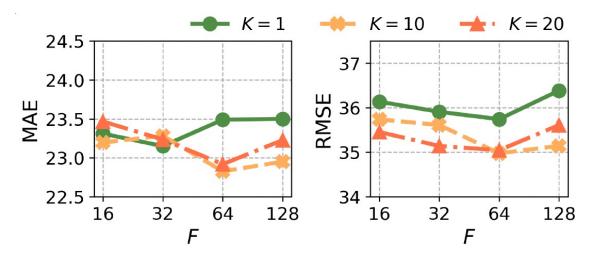
Variant	Overall	1-8 s	9-16s	17-24s
CaST-ADP	24.28	16.42	26.06	30.36
CaST-GAT	23.77	14.76	25.75	30.80
CaST	22.90	13.79	24.86	30.05

Table 2: Variant results on MAE over AIR-BJ. s: steps.

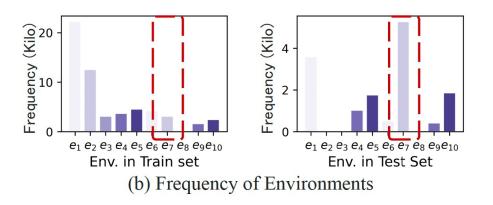
• Visualization of Dynamic Spatial Causation



• Analysis on Environmental Codebook



• Interpretation of Temporal Environments





- Took a causal look at the STG forecasting problem
- Utilized back-door and front-door adjustments for resolving challenges
- Introduced a novel Causal Spatio-Temporal neural network (CaST)
- Verified effectiveness, generalizability, and interpretability through extensive experiments on three datasets

Xia et al., Graph Forecasting: A Causal Lens and Treatment. NeurIPS, 2023.